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(1) Solution:
(a)

T : T .y T . NS MRV S
F(z)= Z2Wln(z za)-z27rln(z+za)— 127rln((z ia)(z+ia)) = 127rln(2 + a*)

(b)
dF T 2

(=)= =i

Stagnation points % = 0 only one at the origin.

(¢) (i) The flow is unsteady since vortices move with the fluid — the induced velocity of one vortex on

the other leads them to rotate.

(ii) The tangential velocity component is simply % where 7 is the distance.

L_ T T
7 9m2 ~ 4ra
the angular velocity is
v v _ T
r o a  A4ma?
(check dimensions should be 1/T')
ag T
dt  4ma?
(d) Sink at the origin
m
F(z) = o In(z)
(w—iv) = 95 = T
Ty T oz T 2mr
directed inwards.
da _ ="
dt 7 2ma

Note from the outset that m is a negative number.

ada = 2 dt
2
1 9 m 1 9
—a" = —t+ -q
3% Tt g%
where ag is a constant.
a=4/—t+ a%
m is negative so a is reducing with time.
dg T r

dt ~ dma® An (2t 4 ad)
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r 1 r 1 r 2
ﬁ:—/m—thz— 2dt=—ln(t+@)+c
47 ?t—l-ao 4m t+% m m

say =0 whent =0

r mi
=-—In(—s+1
p dm n(wa% +1)
go back a = /2t + a — want to eliminate ¢. From Eqn. (1)
A
a3 . 4mp/r
t = ——2(tmAIT _ 1)
m

a= \/ag(e‘lmr@/r — 1)+ a = apVetmP/T = age2™B/T

where m is negative.

(2) Solution:

(a)

7
F(z)= R
(2) UZ+27rz
o . plz = iy)
¢+zz/)—Um+zUy+————27T($2+y2)
ny X psinf
:U _—— — —
P ] (2 1+ o) Ursind 5y

2

where 1 = a, r2 = 22 + 92, y = rsinf. Want 1) =constant

$r = a) = Uasing _ #5080 _ @rUa® — p)sin

ma 2ma
(b) choose p = 2nUa?. ¢ =0 at r = a.
21U a? Ua?
F(z)=Uz+ Y U —C;
T2 z
stagnation points for interest
) dF' Ua? 0
u—tv=—=U - — =
dz 22
z==a

() \
Ua m m
F(z)= Uz+—z—+ Q—Wln(z—i-a) - Q—Wln(z—a)

There are 4 stagnations points. To see this more clearly, find % =0

dz 22 +—2;

U— =
z+a zZ—a

dF _ Ud? m<1 1)_0



a2 ma

Ul—- =)z -a?)— — =0

22 T
U — (@ n 2Ua2> 2+ Ua* =0
T

40 order polynomial 4 roots. By considering the symmetry and looking at the flow pattern we can guess
they are all on the real axis.

Let ¢ = 22
ma

C2—<W+2a2>C+a4=O

9 m m 4malU
(=a [(1+27raU)i27raU 1+ m

22 = (, since m has been chosen as a magnetude then it’s a positive number. Hence there are 4 real

roots. (note should be symmetrical about z =0). U =1, a = 1:

m = 2mal, C=a2(2:h\/§), z =%

(3) Solution:

U
1M
Uss ¢

1 *
— s | _o~n 1~ =2 -
5 [ e +2e ]0 5
6*
H=—=2
4
ou 0 _ 0 vy O7 _n 1 1l
= —_— () = e — n —_ = _ — n — =0 = n_ =
Tw Nay‘y—O M(’?y (Uso(1 — ™)) y=0 Nan (Uso(1 —e™)) ayly—O pUse 5% =0 5
wherey=0=1n=90
/ T 2v
Cr=—2 =
T 1pU2, ~ Ust®
Momentum integral equation
o 0 dUs of
& Uy HYI= g
(b)
1d6* & dUg v

sd T e dn YT U

dUs
dez 0
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doé* 2w

de  Ugd*
gl 2
dz Uy
% (5*)? = ;—:x + constant
Say §* =0at z =0,
VT
0 =2,/—
Uso
(d) want constant §*, Cﬁg: =0
2_(5*dUoo v
U dz  Ugb*
dU. v
20* =2 = —
dx o*
dUs v
de 2(s%)°
v
U = ——5z + constant
o 2(6)?

Not necessary to find the constant.

(4) Solution:

(a) Draw a circuit along the plate. Since v = 0 then the ends make no contributions and also if the

top of the circuit is far from the plate then it makes no contribution so
r=v-1=0U0

(b) Stokes theorem:

fwmz/wds
c A

where c is a closed circuit and A is the area enclosed. Now in our case dS = dy -1 So

o) oo 2 oo _,2
I'(per unit length) = / wdy = wo/ e'zi%dy = wpy 41/1&/ et d ( Y > = wpV Tt
0 0 0 Vvt

(¢) Now from (a) ' = U, so U = wyv/mvt.

" U
0 Vavt
(d)
_ ov Ou B ou
0z Oy Oy
Now wall shear stress
Ou wU




I. C

------- -k
T -

Figure 1: 2D lumped-parameter model

Force = 7, x wall area =7, x 1 x 1

(5) Solution:

(a) Flow in which the vorticity is zero. It is a good approximation in many flow situations or regions
and it reduces the Euler equations to a linear set of equations. In this way solutions can be added.

(b) In the absence of viscosity there are only pressure forces which act through the centre-of-gravity
of fluid elements — thus they cannot exert any torque and so cannot start an element spinning (no torque
- no angular acceleration).

(c) The only sources of vorticity are boundaries or surfaces since this is the only place a net torque
can be exerted on the fluid.

(d) This term is a source term in which a torque can be applied by a pressure gradient acting on
a region of non-uniform density. The simplest interpretation is that the variation in density shifts the
center of gravity of an element. And hence the pressure exerts a torque.

(e) Vortex stretching is the stretching of vortex lines by a strain field. A simple example is swirling
flow through a contraction in a pipe but there are many others — it is important in turbulent flows. It is
also important in the horse-shoe vortex system in front of a wall mounted pylon.

I' = constant for a loop around by Kelvin.
I‘:const.:/w-dS:/%:c—ulgzconst.

Vol = dS -1 (conservationofvolume)

constant

ds = i
Vortcity is proportional to length.
(f) As the vortex is stretched gradients in vorticity increase leading to greater diffusion which tends
to spread the vorticity.
(6) Solution:

(a) 2D lumped-parameter model (Fig. 1):

e Point vortex, circulation I', at quarter-chord point.



e Collocation point C at three-quarters chord.

e I' determined by normal velocity b.c. at C. In the absence of external influences, this is Ua = I'/7e.

2
@@:ZEP_4£+3(£)}
dz c c c

Express in term of #, where 1} =1+ cosf. After some manipulation:

(b)

dy. h[l1 1 3
=—|=—= —cos 20| ;
Iz 0[8 2cosG+8cos ],
dyc h[ 1 3
= — | ——- —_—— 2 :
d:z: c[ 4+0080 4cos 0},
i.e. in standard Fourier series (data card): go = —%Zc‘— g1 = c, go = ——%%.

(i) e = 7(g0 + g1/2) = T2 (ii) emo = Z(go + 1) = 31%

@_\ g

r|
c _GL_
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(c) Overall pitching moment:
1
j‘Z‘pUQCQCmD + pUFtd =0

7w Uch
64 d

T =-—

N.B. pUT = %—pUzccl =T =ZUh

Collocation point b.c. is

we | 2wd T 16
(7) Solution:
(a) Wing lift = pU [°, D(y)dy = E5E [14(1 — y?)dy = ZpU%?
(b) (i) if T(y) = Us 3, oaq Gnsinnd, then [7 I'(y)sinmbdd = FUsGp,.
So G, = %= [¢ T(y)sinmdd = L [7 sin®6@sinm6df (orthorgonality of sins). Hence G; = .

157
Gy =~k
2
(ii) For the elliptical distribution Cp; = %%LR'

For our wing Cp; = (1 +6) 4% CL with § ~ 1 + (aﬁ) . G3/G1 = —1/5 = § ~ 1.04, ie, a 4 % excess

over elliptical.



(c) cu(y) o< T(y)/c(y), so dey/dy oc CELAuzTde/dy
Max ¢ at Cdr\/dy — Pdc/dy = 0;

(1~ 502~ (1= ¥)(~3) =0
ly2 —2y+ 1 0

2 2
y=2-—+/3=0268

Implications: Stall not at root (ideal location to avoid danger of spin), but far enough from tip to
represent acceptable compromise.

(8) solution:

(a) The wind tunnel has no contraction and suffered from flow quality. In particular it had thick
side-wall layers (giving poor flow uniformity) as well as a high level of free-stream turbulence.

(b)The design can be improved through the addition of a contraction. This implies that a diffuser is
fitted after the working section and that turbulence screens and honeycombs are placed in the settling
chamber (the large cross-section region ahead the contraction).

Contractions introduce a strong favourable streamwise pressure gradient. This makes side-wall bound-
ary layers much thinner and thus improves flow uniformity. The rapid acceleration also considerably
reduce free-stream turbulence levels through vortex stretching. Screens help to reduce turbulence levels
even further and also improve flow uniformity (note that Prandtl’s original design feature screens).

(c) The introduction of a contraction and diffuser significantly reduces the flow speed elsewhere in
the tunnel (compared to the working section). Since frictional losses scale with velocity cubed, this has
a big effect on the power requirement because most of the loss is generate in turning vanes and screens
(all of which are located in low speed regions). The addition of screens, however, increase the power
requirement, but since screens were also part of the original design the overall effect of the contraction is
to reduce the power requirement.

A downside of this change is that either the working section is much smaller or the space needed by
the wind tunnel is much greater.

(d) Flow direction can be measure with various multi-hole probes, crossed hot-wires and also by laser
flow diagnostics. The advantages and drawbacks of these techniques are all explained in the lecture

hand-out.



