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1.

(a) Construction of root-locus diagram: The return-ratio is L(s) = kF/s(Js + B). So there are 2 poles,

(b)

at 0 and at —~B/J, and no zeros. Thus there are 2 branches of the root-locus, which start at the
poles, and both branches become infinite as k — co. Every point on the real axis between the two
poles is on the real axis (as a consequence of the angle criterion). Since the excess of poles over zeros
is 2, the 2 asymptotes are parallel to the imaginary axis. They are located at the ‘centre of gravity’

of the poles and zeros: 9?2—_5—(/,—{ = —557. Simple geometry, using the angle criterion

arg(so—0)+arg(so+ B/J) == (1)

shows that the root-loci in fact coincide with the asymptotes. Thus the root-locus diagram is as
shown in Fig.1.
Alternative method: The root-locus is the locus of solutions of the characteristic equation

1+L(s) = 0 (2)
namely 1+ ;(—J—gi—é—)- = 0 (3)
or %+ —?s + %E = 0. | (4)
This has solutions
s=——2%:i: (?)2—416; (5)

which shows that for small k the roots are real and symmetrically located about —B/2J, and for
large k the real part is — B/2J and the imaginary part increases monotonically with &k (and eventually
proportionally to v/&). .

Interpretation of root-locus diagram: The diagram shows that the closed loop is stable for all k> 0.
For small values of k both closed-loop poles are real; as k is increased in this range the closed-loop
transient response becomes faster, because the ‘slower’ pole becomes ‘faster’ (moves to the left).
Beyond some value of k (which can easily be calculated to be B?/4JF, but this is not expected) .
the closed-loop poles become complex. The real part thereafter stays the same, meaning that the
transient response envelope time constant does not change, but the imaginary part becomes larger
as k increases, meaning that the response becomes increasingly underdamped, with oscillations of
increasing frequency.

The quick way to do this is to consider steady-state conditions only, when all signals have settled
down to constant values, assuming that the closed loop is asymptotically stable. Define the position
error to be e = ¢, — . If the demanded angle is to be achieved exactly then in the steady-state we
must have e = 0, and # must be constant. But the motor includes an integration, so its output can
only be constant if its input is 0. Hence we must have

i=-Z#0 (6)
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Figure 1: Root-locus diagram for Q.1(a).

So the controller must have input ¢ = 0 and output ¢ # 0 in the stéa,dy state. But its steady-state
gain is K (0), which must therefore be infinite. The only way of achieving that is to include integral
action in the controller.

More formal approach using Final Value Theorem: From the block diagram

. F o [m(s)
B(s) = 0u(s) - 17 [ o+ K(s)B(s)] - (7)
Hence K(s)F (s)
s TL(s
) B =0~ ©
or _s(Js + B)Oa(s) ~ 71(s)
B6) = =05+ B) + E&F ?

Now by the Final Value Theorem, assuming closed-loop asymptotic stability, ©4(s) = 6q4/s and
{ —_— .
Tr{8) =11 /8:

R . TL

= E(s) = — . 10
A olt) = i sB(s) = - 677 (10)

Hence lim;—.o €(t) = 0 only if K'(0) is infinite, which requires integral action.

Note: The manipulations above become simpler if a generic transfer function G(s) is used in place

of the motor transfer function. Quoting (or deriving) the result E(s) = G(s)7(s)/F[1 + G(s)K(s)]

(assuming 64 = 0 for simplicity) would then be acceptable.

The return-ratio is now
F k(s+a)
L(s) = 11
O =T m < s (11)

There are now 3 poles and 1 zero. One branch of the root-locus diagram is real and lies between
the pole at —B/J and the zero at —a; hence it remains negative since a > 0. Two branches of the
root-locus diagram become infinite as & — oo; the asymptotes are similar to those in part (a), namely
they emanate from the real axis at angles /2. The location of the asymptotes depends on the
value of a.

The complete root-locus diagram looks something like Fig.2 when a < B/J. This is the only possi-
bility since the assumption is that there are no breakaway points other than the origin. Otherwise
a diagram like Fig.3 would be possible. If a > B/J then the diagram is similar to Fig.2 except that
the asymptotes, and the complex branches of the locus, are in the right half-plane.

Just reading off the root-locus diagram (Fig. 2) is almost sufficient, except that we have not proved
that the loci never go into the right half-plane before approaching the asymptotes.




Figure 2: Root-locus diagram for Q.1(c).
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Figure 3: Possible root-locus diagram for Q.1(c) if breakaway points other than the origin existed.

Method 1, using root-locus arguments: Consider a point sp in the complex plane, as shown in Fig.4.
Let arg(sg) = 0, arg(so + a) = a, and arg(sp + B/J) = f, as shown in Fig.4. By the angle criterion,
s is on the root-locus only if

20 -a+f=m (12)

But if sp is in the right half-plane then # < 7/2, and if a < B/J then o > (3, and hence
20— a4+ < (13)

80 sp cannot be on the root-locus. Hence the root-locus must lie entirely in the left half-plane (for
k > 0), and hence the closed loop must be stable for all & > 0.

Method 2, using the Routh-Hurwitz criterion: Stability is determined by the closed-loop characteristic

equation:
F k(s+a)
14+ L(s) = = () 14
+L(s) 1+s(Js+B)X 8 (14)
Its roots are the same as the roots of
2(Js+ B) +kF(s+a)=0 (15)

or
Js3 + Bs? + kFs+kFa=0 (16)



By the Routh-Hurwitz criterion, all the roots of this have negative real parts if and only if BkF >

JkFa, namely if e < B/J.

Note: Part (d) could also be tackled using Bode plot methods from the second-year course. Such

solutions are entirely legitimate and would be given appropriate credit.
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Figure 4: Checking the angle criterion for Q.1(d).

(a) Let n be the dimension of the state vector . Construct the controllability matrix:
P=[B AB --- A"'B]
Then the system is controllable if and only if
rank(P) =n
{b) Take Laplace transfortus of the defining equations in part (a):

8X(s)—-z(0) = AX(s)+ BU(s)
Y(s) = CX(s).

Write sX(s) as sIX(s) and manipulate (19) into the form
(sI ~ A)X(s) = BU(s) + =(0).

The transfer function is defined with the assumption that {0) = 0, hence (21) gives

X(s) = (sl — A)"1BU(s)
Substituting this into {20) gives

Y (s) = C(sI — A)"1BU(s)
and hence the transfer function (matrix) is

G(s) = C(sI - A)~'B

(c) In this case n = 2 o0 the controllability matrix is
b -2

P=[B AB]=[1 -—3+b}

Hence its determinant is

det(P) = —2b — b(~3+b) = b~ b* = b(1 - b).

(17

(18)

(19)
(20)

(21)

(22)

(26)

The system is not controllable when P loses rank, namely when det(P) = 0. By inspection of (26)

it can be seen that this occurs for:



{d) Applying (24), the transfer function is given by

But

. {s+2 1 }
- s+3 ~1 | 0 s+3
(SI"A)IZ[ 0 s+2} T +3)(s+2)
hence
(e w187 5[]
G(s) = .
(s+3)(s+2)
[cl 02]’-sb+2+b:l
| b(s+3)
(s+3)s+2)
c1(s+2+Db)+cob(s +3)
(s+3)(s+2)

As expected with a 2-state model, this is a 2nd-order transfer function. However at the two values
of b for which controllability is lost, pole-zero cancellations occur:

b=0: G(s)

ca(s+2)+0 o

b=1: G(s)

(s+3)(s+2) s5+3’
ci(s+3)+ca(s+3) crte

(s+3)(s+2)

T os+27

3. (a) The ODE is second-order, so expect to need 2 state variables. Let z; = @ and o = 6. Then

T = zp (27)
F 1 1
. - il el 28
& J:c1+Ju+Jd (28)
which can be written as
| _|0 1 T 0 0
a1l Bla ] eel g 2

which is in the required form, with the state vector z defined as = = [z1, z2)7-

The matrix A is triangular; hence its eigenvalues are just its diagonal elements, namely 0 and ~F/J.
The open-loop system is thus marginally stable, with one eigenvalue on the imaginary axis and the

other negative (since F > 0 and J > 0).

The phrase ‘. ..using as few state variables as
sneaky, but it caused some candidates to use
for this part, but they then had to use o 2-sta

possible’ was intended to be helpful rather than
only one state variable (x = §), which was ok
te model in the next part.

(b) Since d is not measured we cannot use it when determining the control signal w. But both state

variables are measured, so we can use a state-feedback control of the form
u=—kT =-—[ k] kz ]:I:
where k = [k1, k2]7. Substituting this into the state-space equation we get

¢ = Ax+ Biu+ Bod
Az — BlkTCE + Bzd
= (A - BlkT)IL' + Bgd

i

(30)

628
(32)
(33)



The closed-loop dynamics depend on the eigenvalues of the matrix:

A-BikT = {8 _1_5,_ ~[g][kl ke | (34)
- [ sly ) @

The eigenvalues are given by the roots of the characteristic polynomial:

F ok Kk
Fok) R 36
A(/\+J+J)+J (36)

To get these roots to both be p, this should be the same as (A — p)2. Comparing coefficients of A!
and A gives

F ke kx 9
— 2= 2 =p2, 37
5+ p  and - =P (37)
Rearranging gives
' kl = sz and kg = —2pJ - F. (38)

(d)

Comment: Large |p| results in large values of both gains, especially k1. Not surprisingly, large gains
are needed to get fast responses. Also for a given p, large gains will be required if the inertia (J) or
viscous friction (F) of the robot is large. Note that, since p < 0 will be needed for stable operation,
kg > 0 for small values of F' but ks < 0 for large values, and kg = 0 if F' = 2|p]J.

Integral action can be introduced into state-feedback schemes by integrating the error in the controlled

variable
e=03—140 (39)

which can be done by introducing an additional state variable, whose derivative is the error:
.’i)g =e (40)
Then z3 will be the integral of the error. Now state feedback of the form

Ty
u=—[k ky ks ]| x (41)
z3

can be used, and the gains chosen to give desired closed-loop pole locations. The state-space model
of the system is enhanced by the addition of the new state variable:

d)] 0 1 0 T 0 0 0
g |=| 0 -5 0|2 |+| % |uv+]| F|d+]0 |6 (42)
i73 -1 0 0 T3 0 0 1

Tracking a ramp without error (in the steady state) generally requires a double-integration in the
controller. This can be obtained in the state-feedback framework by extending the idea used in
part (c). Introduce another new state variable, which will be the integral of z3, and hence the
double-integral of e:

T4 = I3 (43)
Now state feedback will take the form
Z1
u=—[k ko ks k]| " (44)
Zq

Note: This is the obvious follow-on from part (c), but other reasonable suggestions will be given
appropriate credit.




(a) Structure and purpose of observer: Standard bookwork, standard block diagram, as in lecture notes.

Nearly everyone knew the block-diagram, but surprisingly many candidates either did not say
what the purpose of an observer was, or got it wrong.

(b) From the block diagram, the state estimate £ is governed by the ODE

% = A%+ Bu — L(y — C%) (45)

Subtracting this from the given equation £ = Az + Bu, and using y = Czx and é =& — # gives
é=Ae— LCe = (A - LC)e. (46)

Now, either by analogy with # = Ax having solution z(t) = e4*z(0), or by checking that the solution
satisfies the differential equation, or by taking Laplace transforms ([sI — (A — LC)Jé(s) = €(0)), the
solution to this ODE is

e(t) = exp [(A — LC)t]e(0) (47)
where exp [M)] denotes the matrix exponential.
(c) Take the pressures pi,...,pn and the flows qy,...,qn as state variables, assigning them as follows
(for convenience): z1 = q1,Z2 = p1,T3 == ¢2,-..,TaN = py. Then the equation for z1 = q; is
R 1 1
R Ol el 48
Ty 751 LSE2+ 7 Po (48)

which is in state-space form with an external input (py). The equation for zon = pn is

. 1 1
PaN = FT2N-1 ~ HIN+L (49)

which is again in state-space form with an external input (qy41). All the equations for the other
states involve states only:

. . R 1

Tok-1=qx = —7Tok-1+ Z(wzk—z —zor) (k=2,...,N) (50)
. . 1
Lo =Px = -C—($2k~1 — Top41) (k=1,...,N-1). (51)

Note: Tt is ok to work with p’s and ¢'s, without introducing z’s. That keeps the indexing simpler.

If these equations are assembled into matrices then using the state variable assignment as above gives
a ‘banded’ A matrix. (But it is not necessary to do this.)

[ ~R/L ~1/L 0 0 0 0 0 0 1/L 0
1/C 0 -1/C 0 0 0 0 0 0 0
0 1)L —R/L ~1/L 0 0 0 0 0o 0
s=1 O o 1/ 0o -1/C 0 0 0 |gp| O 0 [ Po
. . . . . . . . . dN+1
0 0 0 o 0 .. 1/I —R/L -1/L 0o 0
0 0 0 0 o .- 0 1yc o | | o -1/0C]
(52)
The number of state variables required is 2N.
(d) Now N = 2, so with C = L =1 and R = 2 we have
-2 -1 0 0
1 0 -1 0
A= 0 1 -2 -1 (53)
0 o0 1 0




(e)

Since p; = z is measured, the ‘C” matrix is [0, 1,0, 0]. Hence the observability matrix is

rcl [ o 1 05 0
CA 1 0 -1 0
C=lca =] .2 2 2 1 (54)
[ cA? 2 4 -1 -2
'I'he system is observable if det () # 0. Expanding the determinant by the first row gives
1 -1 0!
detQ=-1x| -2 2 1 ): C1[(—44+ 1)+ 1A= 2)] =10 (55)
2 -1 -2

so the system is observable from measurements of p; alone (since it is given that pp and g3 are
measured, hence available to the observer as inputs). So all the states can be estimated.

If po and g4 are not known, but are known to be constant, then they can be estimated by including
them among the state variables, with governing equations pg = 0 and gy+1 = 0. Then a state observer
for the new system (with 2V + 2 states) can be used to estimate the states, thus including estimates
of po and gn41, providing that the new system is observable from the available measurements.

Several candidates suggested that py and qn+1 could be deduced from &, once it had converged
to z, and the whole system had settled to steady-state (which presupposes that the system is
stable, which may not be the case). The problem is that if pp and N1 are not known then
the observer considered in part (d) will not work any more, because that needs py and qn+1
as inputs.

X



