364
SOFTWARE ENGINEERING AND DESIGN
Engineering Tripos Part I1A
2008 Solutions

Steve Young

Question 1

(a) A class diagram shows the architecture of a software system in terms of its classes,
their attributes and methods and the relationships between them. In particular, the
derivation of one class from another and the navigability between classses are shown.
By contrast, an object diagram shows the actual instantiated objects that exist at
some moment in time when the software is executing including the connections be-
tween them and the instantiated member values.

(b) The required object diagram is shown in Fig. 1. Note that any reasonable naming
convention for the nested list items can be used. The convention followed here uses
the index notation suggested in lectures.

0:Order
I
| 1
items[1]:Box items[2]:Box
| |
| | l I items([2.1]:Bottle
items[1,1]:4-Pack items[1,2]:4-Pack torms[1.3).Botlle codo = 1200
code = 1206 oo id=13
ideg Bottles
bl | T | code = 1206
- X cee ids=9,10
items[1.1.11:Bottle itemsl1,1.4]:Bottle Bottles pode = 1208
code = 1200 me e code = 1200 code = 1208 id=12
id =1 id=4 ids=5,6,7,11

Figure 1: Question 1 Part b: UML Object Diagram

(c¢) The required sequence diagram is shown in Fig. 2. The same naming convention is
used as in part (b).

0:Order items[|1 |:Box items[1 ,1']:4-Pack items[1 .1 ,i]:Bottle
Print

[}
B 1 i
H]
—_’.L_________’Prmt u Print | i !
]
loop) H
&
items[1 ,g]:4-Pack
! . .
Print ’i items|[1 ,2',',|].Bottle
1555 j
a = items[‘1 ,3]:Bottle
Print >|::
Print P ot
and similar for the remaining 3 bottles in this box
Dad— || items[?, 1]:Bottle
Print B] Print i
< I T—— _‘“' | I

Figure 2: Question 1 Part ¢: UML Sequence Diagram

(d) There are a variety of strategies that could be used to implement the Pack () method.
However, in this case the supplied class diagram offers a strong clue in that each class
has its own Pack() method except the Box class. This suggests a design whereby
each object “packs itself”. To do this it is clear that the Order class will need to
supply some helper functions. In particular, a function is needed to find and remove
n identical bottles from its order list and a function to return a box with at least m
spaces, if no existing box exists then a new one is created and added to the list. This
would lead to code something like the following:

bool Bottle: :Pack()
{

ItemList fourbottles;

if (order->GetBottles(4,code,fourbottles)){
order->Add4Pack (fourbottles);
return true; //

o

Yelse {
Box * b = order->GetBox(1);
b->AddItem(this) ;
return false;

and

bool FourPack::Pack()

{
Box * b = order->GetBox(4);
b->AddItem(this);
return false;

}

where the return value indicates whether or not the item has already removed itself
from the list. Given the above, Order: :Pack() just needs to keep packing the first
item in its order list until it is a box:

bool FourPack: :Pack()
void Order: :Pack()

{
while (items.front()->GetType() != ABox){
bool removed = items.front()->Pack();
if (lremoved) items.pop_front();
}
}

Note that the type of each item is recorded explictly by adding a type field to class
Item.

For the sake of a concrete illustration, the above solution is given in C++. This is more
detailed than would be required in an exam where pseudo-code could be used to gloss over
the details of list handling etc.

Question 2

(a) This is bookwork. A semaphore is used to give mutually exclusive access to a sequence
of instructions (called a critical section). The semaphore method enter() is called
on entry to the critical section and leave() 1is called on exit. If when calling
enter some other thread is already executing the critical section, the calling thread

is blocked. When leave is called and there are one or more waiting threads, then
one of the threads is unblocked and allowed to proceed.

Signals are used to synchronise concurrently executing threads. When the wait
method is called, the calling thread blocks immediately until some other thread calls
the send method of the same signal.

Semaphores and signals are represented within the operating system as process
queues. When a thread blocks on a semaphore or signal, it is placed in an asso-
ciated process queue. When the thread is subsequently unblocked, it is removed
from the semaphore or signal queue and moved the processor’s ready queue.

Code for bput and bget is as follows:

void bput(x:T)

{
s.enter(); // enter critical section
q.put(x); // store x in queue
notempty.send(); // signal in case a thread is waiting
s.leave(); // leave critical section

}

T bget()

{
s.enter(); // enter critical section
while (q.size() == 0) // block until queue is

notempty.wait(); // not empty

Tx =q.get(); // get element from queue
s.leave(); // leave critical section
return x; // return value

}

Note that this answer assumes that enter and wait have the same semantics as
in the lectures where it is noted that calling wait inside a critical section must
automatically release the associated semaphore and then automatically reacquire the
semaphore when the wait terminates.

Neither of the proposed solutions is acceptable. When the if statement is included,
then the concentrator is effectively polling its input queues waiting for a packet to
forward. When there is no traffic, this process will just execute a busy waiting
loop needlessly wasting cpu. Removing the if statement avoids the busy waiting
inefficiency but means that the concentrator will block as soon as it encounters an
empty input channel. Meanwhile, the other input channels might be filling up.

(d) (i) A solution using an extra input buffer could be to create an extra protected
control buffer holding integer channel numbers. The code is then modified to
ensure that every time a packet is input to any of the input channels, the index
of that channel is input to the control buffer. The concentrator would then
operate as follows:

do {
int i = control.bget();
p = in[i].bget();
out.bput(p);

} until forever:

(i) A solution using multiple threads could be to create a thread for every input
channel. Fach thread can then read its input directly and happily block when
there is nothing to do i.e. the i’th thread does

void worker(int i)

{
do {
p = inf[il.bget);
out.bput (p);
} until forever;
}
Then the main body of the concentrator program would simply create N threads

and sleep

for (i=0; i<N; i++)
CreateThread(worker,i);
sleep(forever);

Question 3

(a) An IDL is used to describe interfaces to remote objects. Each interface gives a
name to the object and describes its access functions. A number of interfaces can be
bundled together to form a module along with additional type definitions to describe
the data entities which are input and output to/from the objects.

A key feature of an IDL is that the interfaces it describes must be accessable and
implementable in a range of programming languages. Furthermore, the internal im-
plementation language need not be the same as the language used by the client to
manipulate it. Thus, the constructs provided by an IDL must be supportable by
all languages. C++ is too general-purpose for this. For example, C++ supports
pointers and defines its parameter passing modes in terms of implementation (ie by
value or by address) rather than logically (ie in, out or inout).

(b) (i) In a distributed system architecture, remote method parameters must be trans-
ferred across the network from client to server and back. Enforcing an explicit
indication of which direction is intended allows an efficient and correct imple-
mentation of the transfer process.

(ii)) The provided interface is an example of the factory design pattern. The PatientFactory
interface provides access to the remote server without specifying which specific
patient record is required. Once a PatientFactory object has been created on
the client machine, it can be used to generate as many patient record objects as
are required. The Patient interface allows access to the medical record of the
person for whom the associated object was created.

(c) Outlines of the C++ code are as follows:

PatientFactory::PatientFactory(CORBA: :0RB_var orb, string ior)

{
// create remote object via generic pointer
CORBA: :0Object_var obj = orb->string to_object(ior);
if (obj==NULL) throw error();
// narrow the object to the required type
pfvar = PatientFactory::_narrow(obj);
if (pfvar==NULL) throw error();
}
Patient * PatientFactory::getPatient(PatientId pid, AccessCode ac)
{
Patient * p = pfvar->getPatient(pid,ac);
if (p==NULL) throw error();
return p;
}

(d) The obvious approach to performance enhancement is to wrap the Patient class in
a derived class called say CachedPatient which examines a local cache of patient
records and loads the record from the cache if possible, otherwise it loads the record
from the remote server. Fig. 3 illustrates this.

Note that any cached patient record would need to be updated if putPatientRecord
is called.

PatientFactory Patient orbP

+createPatient():Patient *

pf 1 [P

CachedPatient
-localRec : PatientRecord;

+cachedPatient(pid, ac); O
+getPatientRecord()
+putPatientRecord()
pc 1
PatientCache
+patientCached(pid,ac):boolean if (pc->patientCached(pid,ac)) \\
+getCachedRecord(pid,ac) localRec = pc->getCachedRecord(pid,ac);
:PatientRecord; else {
+cacheRecord(pid,ac,newRec) orbP = pf->createPatient(pid,ac);

orbP->getPatientRecord(localRec);
pc->cacheRecord(pid,ac,localRec);

}

Figure 3: Question 3 Part d: Class Diagram for Cached Patient Records

Question 4

(a) This is bookwork. A virtual function is a function whose definition can be redefined

in a derived class. This implies that when a virtual function is referenced as in
p~>vfunc(), the actual function to execute can only be determined at run-time
since it will depend on which specific derived class p—> refers to. Virtual functions
are implemented by generating a jump table of virtual function addresses for each
derived class. Each instantiated object then holds a reference to the appropriate
jump table for its class. Executing p~>vfunc() then simply requires derefencing p
to find the jump table, then looking up the address of vfunc in the jump table. An
example diagram illustrating this was given in the lecture notes.

The required class diagram for the on-line store is shown in Fig. 4. The only difficult
part is the representation of stock levels. In effect there are 2 states: normal stock
levels and low stock levels. Since the handling of orders and provision of delivery
dates will be different for the two cases, the state design pattern is used. Note that
there is an argument for introducing three states (normal, low stock and out of stock).
Either solution would be satisfactory.

1 OnlineStore

/ *
Category
name : string
1 / 1 1
Bin . Product < - Stock
name : string Tovel ot
price : pounds minlevel ;int
+getprice() : pounds +addstock(qgty:int)
+order{c:Cust, gty:int)
| |
InStock LowStock
delivery :int
+addstock(gty:int) +addstock(gty:int)
+order(c:Cust, gty:int) +order(c:Cust, gty:int)
+waittime() : Days;

Figure 4: Question 4 Part b: Class Diagram for Online Store

(c) The key idea of the decorator design pattern is to extend the functionality of a
class whilst preserving its interface. This means that some other client class cannot
distinguish the decorated class from the original class allowing multiple layers of
decoration whilst retaining the ability to treat instantiated objects as a homogeneous
set. Virtual functions are key to the implementation of this pattern since they enable
the behaviour of interface functions to be modified in each layer of decoration without
changing the interface signature. Note finally that the decorator pattern is a run-time
structure i.e. bjects are decorated at run-time by linking the decorator object to the
decorated object via a pointer.

(d) A solution to providing multiple special offer schemes using the decorator pattern is
shown in Fig. 5. Note that the concept of customer reward points has been added
to the Product class. This is the only change to the existing system. The abstract
Offer class forwards requests for price and points to the Product class. Concrete
special offers then provide a layer around the product class which modifies the price
and/or bonus points as required.

Product

name : string <
price : pounds 1
+getprice() : pounds
+getpoints() : int

product

Offer

- return
+getprice() : pounds product->getprice();
+getpoints() : int

A

Discount

+getprice() : pounds &

+getpoints() : int p = Offer:getprice();

return p * discount;

PoinisBonus

+getprice() : pounds
+getpoints() : int

Figure 5: Question 4 Part d: Using the decorator pattern to implement special offer
schemes

