ENGINEERING TRIPOS  PART IIA

Thursday 24 April 2008 9.00 to 12.00

Module 3A1
FLUID MECHANICS I
Answer not more than five questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Attachment: 3Al Data Sheet for Applications to External Flows (2 pages) and
Incompressible Flow Data Card (2 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 A pair of vortices with the same circulation, I, are located initially as shown in
Fig. 1 in an otherwise still fluid.

(a) Atthis instant of time write down the complex potential for this arrangement.
[20%]

(b) Find any stagnation points in the flow and sketch the pattern at this instant. [20%]

(1) This flow is unsteady. Explain (briefly) why. [10%]

(ii)) The pair rotates about the origin. Find the angular velocity of this
rotation, df3 /dt, where 3 is the angle of a line joining one vortex to the origin
with the x-axis. [10%]

(c) A sink of strength m is now added at the origin causing the vortices to spiral
inwards. Find the rate at which g, (the distance of either vortex from the origin), changes,
i.e, find da/d:s. [20%]

(d) The vortices spiral towards the origin. Find the equation of this spiral
trajectory, i.e. the trajectory may be written as a = f(f8) where f is some function. Find
the function f(f). [20%]

Note: f depends also onm, I'.

Fig. 1
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2 Acircular cylinder of radius g in a uniform flow from left to right is to be modelled
by a doublet in a uniform flow of speed U.

(a) Write down the complex potential for this flow and find the appropriate
strength of the doublet used to model the flow. [20%]

(b) Show that the complex potential you derived satisfies the correct boundary
conditions and note the position of the stagnation points. [20%]

(c) A source of strength 2mwaU is added to this flow at z = —a and a sink of
strength —27aU at z = +a.

(i) How many stagnation points are there now? Indicate roughly where

they will be. [20%]
(ii) Find all the stagnation points. Note that the symmetry of the problem

will simplify the mathematics. [20%]
(iii) Sketch the flow pattern. [20%]

(TURN OVER
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3 A boundary layer developing in a wind-tunnel is found to have a self-similar profile
given by

U
U—w=f(n)

where f =1—¢~ and n = y/&*.

(a) Find the momentum thickness, 0, in terms of 6*, the shape factor H, and the

local skin-friction coefficient C}.

(b) Using the results from (a) write down the momentum integral equation for
this flow.

(¢) Find an expression for the growth in the displacement thickness with
streamwise distance x for the case of zero pressure gradient.

(d) Find the variation of Us with x that will lead to a constant 6*.

[20%]

[20%]

[30%]

[30%]



4 A long flat plate of negligible thickness is impulsively started from rest such that
its velocity (in the direction of its length) increases from zero to U in zero time. In this
process a vortex sheet is formed on each side that is initially of zero thickness (and infinite
vorticity).

(a) What is the circulation per unit length of the vortex sheet on one side? [20%]

(b) As the plate continues the vortex sheet diffuses according to the equation
W= wo(t)e—yz/(4w)

where v is the kinematic viscosity of the fluid, and ay the vorticity, which varies with
time, at distance from plate y = 0. Use Stokes theorem with this equation to find the
circulation per unit length of the vortex sheet. [20%]

(c) By comparing the result in (b) with the circulation per unit length in (a), show

that
U
%= NZ3)
Note that: f5° e‘x2 dx = 4 [30%]
(d) Find the drag on the plate per unit length as a function of time — you may
assume unit width, [30%]

(TURN OVER



5 (a) Explain what is meant by irrotational flow and why it is a useful concept.

(b) Explain physically why an inviscid flow of constant density fluid that is
initially irrotational remains irrotational for all time.

(c) What are the sources of vorticity in homogeneous, constant density flow?

(d) Inaflow with spatially varying density the equation for D(®w/p)/Dt contains
the term E%Vp x Vp. Explain the meaning of this term and the physical manner in which
it can produce vorticity.

(e) What is vortex stretching? Where might it occur? Use Kelvin’s theorem and
Stokes theorem to relate the length of a vortex filament to its vorticity in incompressible
flow.

(f) Explain how viscosity limits the intensification of vorticity due to vortex
stretching.

[10%]

[10%)]

[20%]

[20%]

[20%]

[20%)]
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6 (a) Describe the 2D lumped-parameter model of a symmetrical aerofoil section.  [20%]

(b)  An aerofoil section has camber-line coordinate y, given by
2
ye=h(1-2)
c c

where 4 is a constant, ¢ the chord and x the chordwise coordinate. Assuming that thin

acrofoil theory applies, calculate [40%]

(i) the lift coefficient at zero incidence;

(ii) the pitching moment coefficient about the quarter-chord point.

(¢) A second section, symmetrical and of chord ¢, is placed a distance d
downstream of the first. This ‘tail’ aerofoil is to be set at an angle oy such that the overall
pitching moment about the quarter-chord point of the first (‘wing’) section is zero. Use the
lumped parameter model to estimate ;. (You may assume that the wing lift and pitching
moment are unchanged from (b), and that d > ¢, ¢;.) [40%]

(TURN OVER



7 A straight wing of semi-span s is flying at speed U in a fluid of density p. The

circulation distribution is

Us y2
I'yy=—1|1-%
where y is the spanwise coordinate.
(a) What is the lift force on the wing? [20%)]

(b) The circulation distribution may be expressed as the Fourier series

I'(y)=Us Z Gy sinn6,
n odd

where 0 is defined by y = —scos 8. [40%]

(i) Calculate the terms G and G3. (The standard integrals
T
| sin 0d6 = .
0 3

T
/ sin® @sin30d0 = —i
0 15

may be assumed without proof.)
(i) Estimate the percentage by which the wing’s drag coefficient exceeds
that of one with the same aspect ratio and lift coefficient, but with an elliptical

lift distribution.

(c) The wing has a uniform aerofoil cross-section over its span, and chord

distribution

where c, is a constant. Estimate the position of the maximum section lift coefficient, and
comment on the implications for the wing’s stall characteristics. [40%]
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8 Fig. 2 shows the first return wind tunnel designed by Prandtl in 1907. It turned out
that Prandtl was not happy with the flow quality of his design.

(a) Identify the main components included in Fig. 2. Describe briefly what was

not good with this wind tunnel.

(b) How can the design be improved? Illustrate your suggestion with a sketch

and explain why this will improve the situation.

(¢c) Will the improvement you suggested in (b) have an effect on the wind tunnel’s

power requirement? Explain your answer.

(d) One criterion for wind tunnel flow quality is directional uniformity. Give two
examples of devices/techniques that can be used to measure flow direction and explain
briefly their advantages and drawbacks.

M Tast place -——mem § N} Hy

Fig. 2

END OF PAPER

[25%]

[25%]

[25%]

[25%]



3A1 Data Sheet for Applications to External Flows
Aerodynamic Coefficients

For a flow with free-stream density, p, velocity U and pressure p,:

Pressure coefficient: c, = 117 P >
7PV

Section lift and drag coefficients: ¢, = Pflt(—N/Z'—nl , €4 = E@Tg—g—]\—;/—’-@ (section chord ¢)
spUc spU"c

_LR@V) . _ drag (W)

I .2 D70 2
SPU’S ~pU*S

Wing lift and drag coefficients:  C, (wing area S)

Thin Aerofoil Theory
Geometry Approximate representation
Ay 4y
Y =ye(x) ¥(x) .
------------ S S COE T ET TN
B S— > }’/ |
c c
U
U
Pressure coefficient: cp==xy/U
Pitching moment coefficient: ¢,, =(momentabout x = 0)/ % pU*c?
Coordinate transformation: x=c(l+cosf)/2=c cos? 6172
Incidence solution: y =-2Ua ! —.cos(? , ¢ =2ma, ¢, =c¢, /4
sin @
. 1-cosf — .
Camber solution: y==-U|go— + 2 g,sinn0|, where
sin@ “

1% . dy 2% dy
=— (] -2=2<\do, =[] -2—=%|cosnBdO

C JT
» Cp =‘_(go + g +g2)="‘11‘+_8‘(g[+gz)



Glauert Integral

cos ng sin n@

fcos¢—cost9

[

dp =m
v sin@

Line Vortices

A straight element of circulation I" induces a

velocity at P of

%(cosa +cosf3)

perpendicular to the plane containing P and

the element.

(B

-AJ

Spanwise circulation distribution:

Aspect ratio:
Wing lift:
Downwash angle:

Induced drag:

Fourier series for circulation:

Lifting-Line Theory

/Tr(y)\
y

1
-S S

Ap =4s%/8
s

L=pU f T(y)dy

_ 1 wdU(m)/dn
0= f g
D, = pU [T(»)a, (y)dy

I'(y)=Us Y G,sinn@, with y = —scos8

nodd

Relation between lift and induced drag:

"
Z

C
C, =(1+5)—*
Di ( )J'EA

R

, where § = 3(i) + 5(
G,

Gl ..
G



Module 3A1 — Fluid Mechanics I

Incompressible Flow Data Card

Continuity equation V-u=0

Momentum equation (inviscid) p% =-Vp+pg

D/Dt denotes the material derivative, dfdr+u-V

Vorticity w=curlu
. . e e Do.
Vorticity equation (inviscid) o7 =w-Vu

Kelvin's circulation theorem (inviscid) % =0, I'= §u -dl = _[co -dS

For an irrotational flow
velocity potential (¢) u=V¢ and V¢ =0
Bernoulli's equation for inviscid flow,

Piyvitg+ % = constant throughout flow field, V =|u|.

TWO-DIMENSIONAL FLOW
Streamfunction (y) L, v v=_9Y
dy’ ox
_1dy _ oy
- a6’ Mo = or
Lift force Lift / unit length = pU(-I")

' dF .
Complex potential F(z) for irrotational flows, with z =x+iy, F(z)= ¢ +iy and = =u—iv

Examples of complex potentials

(i) uniform flow in x direction, F(z2)=Uz
- (ii) source at z,, F(z)= m In(z - z,)
27
(iii) doublet at z,, with axisin x direction, _ H
F(z)=——
27(z—z,)

(iv) anticlockwise vortex at z,, F(z)=— ir In(z—
- F(@)=—o—lnz-2)



TWO-DIMENSIONAL FLOW

Summary of simple 2 -D flow fields

¢ v circulation u
Uniform flow _ _
(towards + x) Ux Uy 0 u=U,v=0
Source at origin Zinr g 0 u = _rzz_, u, =0
2r 27
Doublet at origin i i
0 s angle from lcosf _ Usind 0 0 = ,ucosze = ,usmze
doublet axis 2mr 27r 27r 27r
Anticlockwise Ly, _L,, Tamoud 0 p =1
vortex at origin 21 o origin e
THREE-DIMENSIONAL FLOW

Summary of simple 3 -.D flow fields

Source at origin

Doublet at origin
0 is angle from

doublet axis

¢
amr

ucos@
drr”

u
m
u,=4—7;2-, ue—O, u¢—0
pcos@ [sin@
_ - u, =0
27r o 4’ Y
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