ENGINEERING TRIPOS PART ITA

Thursday 8 May 2008  2.30 to 4.00

Module 3D7

FINITE ELEMENT METHODS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachment: Special datasheets (3 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions
printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 A planar pin-jointed structure, with geometry as shown in Fig. 1, consists of four
straight members. Each member behaves linearly elastically and has axial stiffness EA.

(a) Set up an equilibrium matrix H which relates the axial forces in the structure

r={; ty ty ty }T to the set of external loads p=1p4x pay }T ={w O}T applied

to node A. [20%]
(b) Obtain a general solution to the set of equations Hr = p. [40%)]
(c) Evaluater if the structure is initially unstressed. [40%
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2 Figure 2 shows a finite element mesh of three-node triangles modelling a thin plate
subject to in-plane gravitational loading g in the direction shown. The plate has a
thickness of 1 mm and a density of 3000 kg/m®. You may assume that g = 10 m/s?.

(a) Find the equivalent nodal load components pgyx and pgy .

(b) Hence determine the equivalent nodal load components at all the other nodes.

(c) In a subsequent calculation all the three-node triangular elements are replaced
with six-node triangular elements by introducing additional mid-side nodes. What
qualitative change would there be in the equivalent nodal loads pgy and pgy at the node
numbered 9 in the original mesh? Explain your reasoning but do not perform additional
calculations.

(d) Briefly discuss the advantages and disadvantages of this change of elements.

200 mm

T

200 mm
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3 The temperature profile inside a bar shown in Fig. 3(a) is a concern. The bar has
three segments each of 1 metre length. Each segment has a different cross-sectional area A
and thermal conductivity k& as shown in the figure. The temperature at the left hand end is
50 °C and the flux at the right hand end is 15 Jm %571, The side boundaries are insulated.

(a) The problem can be simplified to a one-dimensional steady-state heat transfer
problem. The governing equation can be expressed as follows:

_‘Z_(Ak.d_T] =0
dx dx

where T is the temperature, A is the cross-sectional area, and k is the thermal
conductivity. Show that the weak formulation of the governing equation including the
boundary conditions is

sdv  dT
EAIC ;dx = O.3(V)x=0 qo —O.75(V)x=3

where v is a weight function and gy is the flux at x = 0 (the left hand end).

(b) The temperature 7 and the weight function v are approximated using the
following shape functions.

T:Na, dl:ﬁa:Ba
C e de
v=Ne, ﬂ=iN—c=c
dx dx

where N is the shape function matrix, a is the vector of nodal temperature values and ¢
is the vector of arbitrary nodal values. Show that the finite element approximation of the
weak form given in part (a) becomes

( [ :BTAdex)a =0.3(N"),_,q, ~0.75(N")_,
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(c) For the finite element approximation a mesh shown in Fig. 1(b) is used with the
following linear shape functions for each element.

Element 1 (Nodes 1 & 2) : N, =[0-x),x] for 0< x<1 and = 0 otherwise
Element 2 (Nodes 2 & 3) : N, =[(2-x),(x-1)] for 1<x<2 and = 0 otherwise
Element 3 (Nodes 3 & 4) : N,=[(3-x),(x—2)] for 2<x<3 and =0 otherwise

Derive the stiffness matrix for each element. [20%]

(d) Develop the matrix form of the weak formulation derived in part (b). There is
no need to solve for the actual nodal values. [20%]

() The one dimensional model cannot provide a solution to local variations of
temperature around the joints of the segments. Sketch the shape of the temperature contours

that you would expect to see around the joints. [20%]
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4 A finite element mesh with boundary conditions as shown in Fig. 4 consists of a

single four-node bi-linear quadrilateral element. The element represents part of a planar

sheet of material with Young’s modulus E = 100 kN/mm?, Poisson’s ratio v = 0 and

thickness ¢ = 1 mm. The origin of the co-ordinate system is at the centre of the element.

(a) Find the shape functions for the element and hence formulate the strain shape
function matrix B. You need only consider the unconstrained degrees of freedom.

(b) Given the additional boundary conditions d3x =d3y =0 calculate the stiffness
matrix K that relates the nodal displacement d =[d,x ] to the corresponding nodal force

p=I[pax1.

| N|

' 200mm |
Fig. 4
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Part ITA: Module 3D7 2007/ 08
Finite Element Methods

Formulae

Force Method

Stress resultants:

solve Hr = p and find r = rg + Sx;
then, solve STFSx = —8T(Frg + eg) for x.

Displacements: solve HT'd = e, where e = Fr + ey.
Displacement Method
Displacements: solve Kd = p.

Stress resultants:

SP
February 2004

DDS
March 200%

for element 4, solve F;r; = e;, where e; = (H,)Td!.
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Basic relationships, for element j :

displacements
strains

stresses

stiffness matrix

stiffness equations

Material stiffness (for plane stress) D=

u=Nd
e=B @
c=De=DB &

K= [ @) DB av

K @ = p!

Shape functions of some simple plane stress elements

y A

L —_p

v

0.5
W t
1 0.5
q r S

ng = [(Xc¥s — Xs¥o) + (¥r — Ys)X + (Xs — X)Y)/2A

ne = [(Xsyq — Xq¥s) + (¥s — Yg)X + Xq— Xs)Y)V2A
ng = [(XqYr— XtYq) + (¥q — YOX + (xr — Xg)Y]2A
A = area of triangle

ng=(1-8&1 -ny/4
n,=(1+&1-n)4
ng=(1+&A +n)4
n = (1- &)1 +n)4

ng=(1-§-m)(1-28-2n)

n=45(1-&-m)
n=€ (25~ 1)
n=4&mn
ny=n2n-1)

ny=4n(1-§-1)






