ENGINEERING TRIPOS PART IIA

Friday 25 April 2008 9.00 to 10.30

Module 3F6

SOFTWARE ENGINEERING AND DESIGN

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

There are no attachments.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator

2

1 The warehouse of a large chemical company receives daily orders for chemicals as
a sequence of individual requests. All chemicals are shipped in 1 litre bottles and each
incoming order consists of a quantity in litres and a product code. At the end of each
day, the warehouse processes each order list. Every bottle ordered is given a unique id
and groups of 4 bottles with the same code are shrink-wrapped to form a "4-pack”. All
4-packs and all individual bottles are then packed in boxes capable of holding three 4~
packs, 12 bottles or a mixture of both. Fig. 1 shows an example order and an illustrative
corresponding packed order list ready for dispatch. Fig. 2 shows a UML class diagram
for the core of the software system which inputs individual orders and outputs packed
order lists. The initial orders are input via Order : : AddBottles (), given a unique id and
stored in Order: :items as a linear list of individual Bottle objects. When the Pack
method is called, the linear list is transformed into a hierarchical structure matching the
packed order.

{a) Explain briefly the difference between a UML class diagram and a UML
object diagram. [15%]

(b) Draw a UML object diagram showing the objects instantiated after the order
shown in Fig. 1 has been packed. Your diagram should show the full structure but you

can use ellipsis (i.e. ...) to indicate repeated objects of type Bottle. [25%]

(c) Draw a UML sequence diagram to show the call sequence following a call
to Order: :print to print the packed order list. Use loop sequence fragments where

appropriate. [30%]

(d) Outline a design for the Pack() methods. Identify in your design any
additional methods required for the classes shown in Fig. 2. [30%]

Initial Order List

1 code 1200 [id=1]
1 code 1200 [id=2]
1 code 1200 [id=3]
1 code 1200 [id=4]
1 code 1208 [id=5]
1 code 1208 [id=6]
1 code 1208 [id=7]
1 code 1206 [id=8]
1 code 1206 [id=9]
1 code 1206 [id=10]
1 code 1208 [id=11]
1 code 1208 [id=12]
1 code 1208 [id=13]

Packed Order List

Box
4-Pack
1 code 1200 [id=1]
1 code 1200 [id=2]
1 code 1200 [id=3]
1 code 1200 [id=4]
8 4-Pack
1 code 1208 [id=5]
1 code 1208 [id=6]
1 code 1208 {id=7]
1 code 1208 [id=11]
1 code 1206 [id=8]
1 code 1206 [id=9]
1 code 1206 [id=10]
1 code 1208 [id=12]
Box
1 code 1208 [id=13]

Fig. 1
order jtems
Order < > Item ‘
y . items
+AddBottles() +Pack() < .
+Pack() +Print()
+Print() ©
] 4]
Bottle Container
-id :int
foreach i in items -code : int +Pack() o
. . ; foreach i in items
i->Print(); j +Pack() +Print() O— > Print():
+Print() [}
[]
4-Pack Box
+PaCk() +Print() Q
+Print() ©
print("4-Pack"); print("Box");
Container::Print(); Container::Print();
Fig. 2

(TURN OVER

4

2 (a) Describe the roles of semaphores and signals in concurrent programming and

briefly explain how they are implemented.

(b) Figure 3 shows a UML class diagram of the implementation of a protected
buffer for use in a concurrent program. The ProtectedBuffer class uses a semaphore
and a signal to ensure safe access to a queue of elements of type T. Write suitable
implementations for the bput and bget access functions in C++. You may assume that
there is sufficient memory to ensure that the queue never becomes full.

(c) The ProtectedBuffer class is now used to implement the packet
concentrator shown in Fig. 4. The concentrator collects packets input via its N input
channels in[0]..in[N-1] and outputs them as a single stream via its output buffer
out. Explain why the following code for the packet concentrator does not provide an
acceptable solution either with or without the if statement on line 6:

ProtectedBuffer<Packet> in[N];
ProtectedBuffer<Packet> out;
Packet p;
do {
for (i=0; i<N; i++)
if (in[i].size()>0) {
p = in[il.bget();
out.bput (p);

O 0 N OO W NN -

¥

10 } until forever;

(d) Outline acceptable solutions to the concentrator problem using:

(i) multiple threads;

(i) an additional buffer.

[20%]

[30%]

[20%]

[30%]

Queue<T>
g
T Fputx:m)
+get() : T;
ProtectedBuffer<T> +Size() : int;
S Semaphore
+bput(x : T) 1
+bget() : T; +enter();
+bsize() :int; +leave();
1 Signal
notempty
+send();
+wait();
Fig. 3
in[0]
in[1]
Concentrator out >
- —{ 1

ProtectedBuffer<Packet>

Fig. 4

(TURN OVER

3 (a) Describe the role of an interface definition language (IDL) in distributed
systems. Explain why the direct use of C++ class interfaces would not be appropriate
for this role.

(b) Figure 5 shows a CORBA interface specification for a simple remote patient
record system called “Med-Online” which allows patient records to be downloaded from
a central database and, if required, modified and uploaded.

(i) 'Why do the function arguments require the direction modes in or out
to be specified?

(i) Why are two remote interfaces provided? What is the role of each?

(c) A software system written in C++ provides the class PatientFactory shown
in Fig. 6 to encapsulate the remote Med-Online interface. Outline the C++ code required
to implement the PatientFactory constructor and the getPatient function.

(d) In operation, the remote access to patient records is found to be very slow. It
is noticed that the same core set of patient records are frequently downloaded from the
remote server but only rarely updated. Describe with the aid of a UML class diagram
an extension to the software which would reduce access times to frequently used patient
records.

(cont.

[20%]

[20%]

[30%]

[30%]

module MedOnline {
typedef char PatientId[10];
typedef char AccessCode[8];
typedef PatientRecord;

interface Patient {
boolean getPatientRecord(out PatientRecord pr);
boolean putPatientRecord(in PatientRecord pr);
//each interface function returns false on error
};
interface PatientFactory {
Patient getPatient(in PatientId pid, in AccessCode ac);

};

Fig. 5

class Patient {
public:
bool getPatientRecord(PatientRecord& pr);
bool putPatientRecord(PatientRecord pr);
};
class PatientFactory {
public:
PatientFactory(CORBA::0RB_var orb, string ior);
// create a Patient Factory given an Object server (orb)
// and an interoperable object reference for MedOnline (ior)
Patient * getPatient(PatientId pid, AccessCode ac);
private:
PatientFactory_var pfvar;

};

Fig. 6

(TURN OVER

4 (a) Explain what is meant by a virtual function and explain how virtual functions

are implemented in languages such as C++.

(b) A new on-line store is commissioning a software system to perform stock
control. Part of the specification for the software reads as follows:

“Products for sale will be divided into a number of categories (e.g. books, DVDs,
etc.) and each category contains a range of products (e.g. specific books). Each product
has a name, a price and a stock position. The stock position records the actual stock level
and a desired minimum stock level. When a product is purchased, the stock position is
updated, and when the stock level falls below the minimum level the stock status changes
from normal to low. A re-stock order is then generated and an estimated delivery time
is recorded for display to potential customers. All inventory is stored in a warehouse
consisting of a number of bins. Every bin holds a number of products and every product
records which bin it is stored in. When a product is re-stocked, the corresponding stock
level is updated.”

Using good design principles, draw a UML class diagram which shows the main
classes that will be needed for this software, the relationships between these classes and
the main attributes and operations that they should support. You do not need to give any

pseudo-code annotations in your answer.

{c) Describe the principle of the decorator design pattern and explain the role that
virtual functions play in its implementation. A class diagram for the decorator pattern is
not required.

(d) Some time after installation of the on-line store, an extension is required to the
software to support special offers on various products. Two kinds of special offer are to
be implemented which can be used individually or in combination. The first type of offer
is a simple discount on the price of the product; and the second type of offer is to give
additional loyalty points to the customer. Furthermore, the upgraded software must be
sufficiently flexible to allow further special offer schemes to be introduced without major
changes to the installed code. Explain how the decorator design pattern can provide a
solution to this upgrade problem and illustrate your answer by showing the changes that
would be needed to your UML class diagram.

END OF PAPER

[20%]

[35%]

[15%]

[30%]

