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2009 PART ITA 3F1 — SIGNALS AND SYSTEMS Dr J. Gongalves

1  (a) The z-transform of {v;} is given by
Viz) = Y vz*
k=0

= (fotfir "+ 4 faz @) (1474724 )

_ _FQ@
1—-z77
[20%]
by @ Taking z-transforms and assuming zero initial conditions gives
Y(z) =Bz "Y(2) +U(z) -z "U(z), or
Y(z) 1-z7"
Ulz) 1-Bz"
[20%]
(i) zeros: n' roots of 1; poles: nt* roots of B. Forn =1 zero at 1 and pole
at B. For n = 2 zeros at =1 and poles at :i:\/—B— . Pole-zero diagrams can be
found in Fig. 1. [20%]
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(iii) 'We have that

_ F(2) 1—-z77
Y@ = 1—z" 1-Pz"
F(z)
1-Bz "

= (fo Az 4 +fn_1z_("_1)) (1 +B B4 )
(TURN OVER for continuation of Question 1



A sketch of the response of the filter can be found in Fig. 2. [20%]
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(iv) A step can be written as ]Ajz%, where F(z) =14z 1 +--- 4771 ie,
pick fr =1, k=0,...,n— 1. Hence, from the previous part the step response

if given by

F(z)
1-Bz 7

A sketch of the step response of the filter can be found in Fig. 3. [20%]
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3

@) The closed-loop poles are the roots of
a
l+k——=0
Bz—1
or the roots of Bz — 1+ ko = 0. For stability, we require the closed-pole
7= % to lie inside the unit disc, or
koo —1
-1< <1
B
Since & > 0 and B > O this is equivalent to
1- 1
_ﬁ <k< Lﬁ
a
[15%]
(i) E(z)is given by
1 Bz—1 4
E(7)=—— - U(z) = .
(@) kg (@)= g T4ka =1
Thus, the Final Value Theorem (FVT) applies and
: . . (Bz—1)z B-1
1 =1 —-1DE(z) =1 =
Jim e = lim (= DEG) = lim o e = BT+ ka
[25%]
(iii) From part (a)(ii) we need B = 1 and the system to be stable. Thus, from
part (a)(i), we require 0 < k < 2. [10%]
@) Consider the linear system:

Time domain

h(t)
(1) o (1) = h(r) xx(t
S.() System 5,()
H(o)

Frequency domain

Block diagram of a linear system with a random input signal, x(¢).

(TURN OVER for continuation of Question 2
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Let the linear system with input x(¢) and output y(¢) have an impulse

= [#(B)x-

response A(t), so

Then the ACF of y(¢) is
ry(tn) = Ep(n) y()]
— £ ([t -p) dﬁl) (/B r)ap2) |
= E| [ [ BBt - st~ B)aprdfs |
= [ [ (B (B E Lt~ Br)xtea — B2)) 4By o
= [ [ 1B risler = Brota — Br) dBr By

Since x is wide-sense stationary, then we substitute T =1t —#; and t =¢{ to
get

(@) = EDE)y(e+1)
- //hﬁl Bo) (s + Br — B2) 41 By

If x is white, then 7y, (7) = (7). Hence

//h B1)h(B2) (7 + B — Ba)dBrdpy
~ [ h(B)h(z+Br)dB = h(x) +h(~)

Taking Fourier transforms:

Sy(w) = FT{ry(1)}

= / ( / h(B) (T +[31)d[31) e 1274
_ /h B) (/h (z+B) e—f"”dr) dB
_ /hﬁ1 (/h ye—JoA=B) dl)dﬁl
_ ( / h(By) /P d[31) ( / h(A e—fmdx)

= H*(w)H(®) = |H®)|>  where H(®w) = FT{h(s)}

(cont,



Alternatively, we could have used properties of the Fourier transforms:
convolution in time is multiplication in frequency and the Fourier transform
of h(—t) is H*(jw). Hence the PSD of y =the power gain |H|? of the system
at frequency .

(i) If a large and important system is subject to random nearly-white

perturbations (e.g. a power plant subject to random load fluctuations), we may
measure ryy(7), transform it to Sy(®), and hence obtain

Hence we may measure the system frequency response without taking the
plant off line. The approximation comes from the fact that white noise cannot
be realised in practice and can be approximated by nearly-white noise.

(TURN OVER

[35%]

[15%]
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3 (a) Random variable Z is the sum of two independent random variables X and Y:
Z=X+Y

where X has pdf fx(x) and Y has pdf fy ().
We can write the joint pdf for Z and X as:

fz2.x(2,%) = fz7x (2]x) fx (x)

For X and Y independent, the event ‘Z takes the value z conditional upon X = x’ is
equivalent to Y taking a value z — x (since Y = Z — X). Hence

Fap(as) = fir (=)
Now f7(z) may be obtained using the Marginal Probability formula. Hence
2@ = [ faxen) fx(x)ds
= [ fre-x) fxax

—00

= fy*fx

which is the convolution of fy with fy. [25%)]

(b) The characteristic function of a pdf is defined as:

Ox (1) = Ele™] = [ ™ fy(x)dx = F(-u)

where F(®) = [, ¢~/%% fx(x)dx is the Fourier Transform of the pdf.

Using the previous result for fz(z):

Oz() = /_Z e/ f7(2) dz
- /_Z ejuz/_sz(Z—X)fx(x)dxdz
B /:o fx) /_ZfY(Z’x)ejuzdzdx
/_0:0 Fx () /_ ny(y) I dy oI dx

= [ A@erweax
= Ox(u) . Py(u)

[25%]

(cont.



(c) The characteristic function of X is given by
Dx(u) = Ele™]

= / f(x)e/™dx
= /_OOZxLOe_VVerjuxdx
1/ O xo0i L[ /w04
= — [ e OeJ“xdx—{-—/ ¢ ¥/ 0w gy
Zxo —o00 2x0 0
0 o0
SRS S € 501 R x<x—;+fu)]
B 1 1
 2(1+juxg)  2(—=1+4 juxg)
1
B 1+u2x(2)
(Note: ®x(0) =1, so pdf is valid.)

Hence,
Dz(u) = Dx(u) Dy(u)
1
(1 +u2x%) (1 +u2y%)

(d) To prove the central limit theorem, we need first to show that for a Gaussian
pdf of zero mean ®x(u) = exp_oz"z/ 2. Then, when N independent (not necessarily

Gaussian) identical pdfs are scaled by 1/+/N and added together, the characteristic

function of the result is
oxti =12 (75) =+ (35)
5. ¢ fd —_— — —_—
=1 \VN VN

where ® (ﬁ) is the characteristic function of each of the separate input pdfs, after
scaling by 1/+/N. Assuming zero mean implies that ®'(0) = 0. Hence, taking logs:

log®Px(u) = Nlogcb(%)

2

= Nlog (1 + ;_NCDH (0) + terms of order N —3/2 o smaller)

2

= yz—cbll (0) + terms of order N ~1/2 or smaller

(TURN OVER for continuation of Question 3
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AsN — =

utc?

log CI)X(u) —_ —

since @ (0) = —o2. Thus,
2
Dy (u) — exp_“zo' /2

2

which is the characteristic function of a Gaussian of variance o~.

[25%]
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4 (a) Mutual information is defined as:
I(X;Y)=H(X)-HX|Y)

Based on this, we may obtain the following general expression for conditional entropy
and hence mutual information:

Ny
HX|Y) = —Zpyj Z (x;lyj)logy p(xily;)

= —ZZp xi,yj)logy p(xily;)  since p(x,y) = p(x]y) p(y)
2,

I(x;Y) = _Zp x;) logy p(x; +ZZP xi,¥ ) logy p(xily;)
j i
= ZZP %;,yj)llogy p(xily;) —loga p(xi)]  since ) p(x,y;) = p(x)
Joi J

plxily j))
= Pixi,Yj log (
ZJ:; oyiloga |~y
1(Y;X) can also be obtained in the same way to give:

- T (2520

Using Bayes rule,
p(xilyj) p(yj) = p(xi,yj) = p(yjlx:) p(xi)

and so
p(xily;)  p(yjlxi)
p(x) — pO;)
Hence
I(Y;X)=1(X;Y)
i.e. X provides the same amount of information about ¥ as ¥ does about X. [35%]

(b) From above
I(Y;X) = H({Y)-H(Y|X)
= H(Y)—BH([0.15 0.85])—(1—B)H([0.85 0.15])
= H(Y)—-H([0.15 0.85])
Now, P(x=1)=fB and P(x=—1)=1—-f. Thus, Py=1)=P(y=1x=1) - P(x =
)+Py=1x=-1)-P(x=-1)=0.85+0.15(1— ) =0.15+0.78,and P(y=—1) =
(TURN OVER for continuation of Question 4
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1—-P(y=1)=0.85-0.78. Therefore, H(y) = —(0.15+0.7)log,(0.15+0.78) —
(0.85 —0.78) log, (0.85 —0.7p). Finally,

I(V:X) = —(0.15+0.78)logy(0.15+0.78) — (0.85 — 0.78) log,(0.85 — 0.78)
+0.1510g,(0.15) 4-0.8510g,(0.85)

[30%]

(c) Since H(Y|X) does not depend on B, I(Y;X) is maximised when H(Y) is
maximised. This will be when P(y =1) = P(y = —1) = 0.5, which is when § = 0.5. This
is well known (see Fig. at the end of section 1 of lecture notes) but can be proved by
differentiating

dip[H(p) In2] = ;—p [—pIn(p) — (1 —p)In(1 — p)]

1—-
= —In(p) = +In(1-p)+ 7

1-p
= ln(l;p) =0
p

which gives (1—p)/p=1or p=10.5. S0,0.15+0.78 = 0.5, or B =0.5.
When 8 =0.5,

I(Y;X) = H([0.5 0.5])-H([0.15 0.85])
= 140.15log,(0.15)+0.8510g,(0.85)
= 1-0.4105-0.1993
= 0.3902 bits per bit transmitted

which is the capacity of the channel. Hence, to convey 1000 bits error-free, we need to
transmit at least 1000/0.3902 = 2564 bits over the channel. In practice, when using real
codes we would need a few more bits than this, say 2600. [35%]

END OF PAPER
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L o0 58 =15
++/B.

(b) (ii) For n =1 zero at 1 and pole at 8. For n =2 zeros at +1 and poles at

2 @G B <k< 2B
i) 52
i) B =1,0<k<2.
(®) () Sy(@) = |H(w)[.

_ 1
3 (©Pz(uw)= (1-+u2x3) (1+u2y3)

4  (b)I(Y;X)=-(0.154+0.78)l0og,(0.15+0.78) — (0.85—0.7) log, (0.85 —
0.78) +0.15l0g,(0.15) + 0.8510g,(0.85).
(c) B = 0.5, capacity of the channel = 0.3902 bits per bit transmitted.






