ENGINEERING TRIPOS PART IIA

Monday 20th April 2009 9.00 to 10.30

Module 3F6

SOFTWARE ENGINEERING AND DESIGN
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

There are no attachments.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator

2

1 A simple software tool is required which allows text files to be retrieved based on
string matching expressions conforming to the syntax shown in Fig. 1. For example, the

expression:
‘software engineering’ . ‘lectures’

would match all documents containing at least one occurrence of the string ‘software
engineering’ and at least one occurrence of the string ‘lectures’. The expression:

‘software engineering’ . (‘lectures’ + ‘notes’) . ! ‘draft’

would match all documents containing at least one occurrence of the string ‘software
engineering’, at least one occurrence of the string ‘lectures’ or the string ‘notes’ and no
occurrences of the string ‘draft’.

(a) Draw the parse tree for each of the two example expressions above.

(b) Draw a UML class diagram suitable for representing the parse tree of any
string matching expression. Each component class representing a node of the parse tree
should derive from a single abstract class which provides the following public interface
method:

IsaMatch(d:Document) :Boolean.

(c) Assuming that an IsaMatch method for strings is provided, add notes to
your UML diagram to show how the IsaMatch method is implemented for terms and

expressions.

(d) Explain how the syntax rules could be modified to give a higher precedence
to the logical-and operator so that for example the expression ‘a’+‘b’.‘c’+‘d’ is
equivalent to ‘a’+(‘b’.‘c?)+‘d’ and indicate how the UML class diagram would need
to be modified to incorporate this extension.

(cont.

[25%]

[25%]

[25%]

[25%]

expression = term [log-op expression]
term = string | "(" expression ")" 1 not-op term
log-op = logical-or | logical-and
logical-or = 4t
logical-and => """
not-op = "'
string => 'any sequence of characters'
Fig. 1

(TURN OVER

4

2 (a) Explain the purpose of the observer design pattern and list its advantages and
disadvantages.

(b) Figure 2 shows a modified observer design pattern which allows an observer
to view multiple subjects. If there are two observers both observing the same two subjects,
draw a UML sequence diagram showing what happens when one of the observers calls
the SetState method on one of the subjects.

(c) When an operation calls SetState on several subjects sharing the same
observer, the design in Fig. 2 will result in many unnecessary updates. How can the
design be made more efficient?

(d) In some cases a more complex mapping between subjects and observers will
require a class to be interposed between subjects and observers. Figure 3 shows an
example of this where it is assumed that subjects are nodes in a network such that when
the state of a node is changed by an external agent calling the ExtSetState method,
further state changes may propagate to other neighbouring nodes in the network via calls
on their SetState methods. The ChangeManager ensures that when there is a burst
of such state changes the Update method of each observer is called only after all state
changes have taken place and it is called only once regardless of how many nodes it is
observing. Define a suitable data structure for the subject-observer mapping and provide a
pseudo-code implementation for the Register, Notify and NotifyComplete methods.

(cont.

[20%]

[20%]

[20%]

[40%]

Subject

5

observers

+Attach(o:Observer)
+Detach(o:Observer)

+Notify() O----

*

}

for each o in observers {
o->Update();

subjects

ConcreteSubject <

-subjectState

+GetState()
+SetState()

O =|----
Q

subjectState = ...;

Observer

+Update()

A

’ L

ConcreteObserver
-observerState
+Update() o]

for each s in subjects {

~>| Observer

Notify(); UpdateObserverState(s->GetState());
}
return subjectStateBI
Fig.2
subjects observers
Subject < ChangeManager >

+Detac
+Notify

+Attach(o:Observer)

chman

-subjectObserverMapping

h(o:Observer)

0 Q E

E

chman->

+Register(s:Subject,0:Observer)
+Unregister(s:Subject,0:Observer)
+Notify(s:Subject)
+NotifyCompilete()

Notify(this)ﬁ

neighbours

chman->Hegister(this,o)B|

*

NetworkNode

-subjectState

+GetState()

+SetState()
+ExtSetState()

O
®)

Notify();

subjectState = ...,

SetState();

}

for each n in neighbours {
n->SetState();

chman->NotifyComplete();

Fig.3

+Update()

(TURN OVER

6

3 A multi-threaded system utilises a set of N identical resources. When a thread
wishes to use a resource it must first obtain a ResourceKey from a pool of keys by calling
the method KeyPool: :GetKey as shown in Fig. 4. When it is finished with the resource,
it must call KeyPool: :ReturnKey to return the key to the pool. However, the KeyPool
class is not thread-safe and hence an additional wrapper-class ProtectedKeyPool is
required to provide safe access to the resource pool.

(a) Explain what is meant by the term thread-safe and give some examples of
what can go wrong when multiple threads attempt to use a class which is not thread-safe.

(b) As shown in Fig. 4, ProtectedKeyPool uses a semaphore with methods
Secure() and Release() to provide the required thread-safety. Describe the function
of a semaphore and explain briefly how it is implemented.

(¢) ProtectedKeyPool also makes use of a signal with methods Wait () and
Send (). Describe the function of a signal and explain its complementary relationship
with the semaphore.

(d) Define suitable specifications for the methods ProtectedKeyPool: :GetKey
and ProtectedKeyPool: :ReturnKey and provide implementations for them.

(e) After some time in use, it becomes clear that some threads require high
priority access to the key pool. Modify your design to provide high priority access such
that no waiting thread with low priority will be granted a key unless there are no threads
waiting with high priority.

ProtectedKeyPool I> KeyPool
keys

-poolAccess: Semaphore
-keyAvail: Signa

+GetKey(): ResourceKey
+ReturnKey(key:ResourceKey)

4 +KeysAvailable(): int
+GetKey(): ResourceKey
+ReturnKey(key:ResourceKey)

Fig. 4

[15%]

[15%]

[15%]

[30%]

[25%]

7

4 (a) State the four ACID properties of transactions and explain why each is
important.

(b) Figure 5 shows a sequence of sixteen actions scheduled for execution by four
transactions T1, T2, T3 and T4 operating on four database accounts A, B, C and D. Each
operation Q.read must acquire a shared lock Q.S on account Q, and each write operation
Q.write must acquire an exclusive lock Q.X on account Q. Once acquired, all locks are
held until the transaction either commits or aborts. Draw a resource allocation graph for
this sequence of transactions and hence determine the first point at which deadlock occurs.

(c) Draw the corresponding wait-for-graph at the point of deadlock.

(d) Explain how the system can recover from the deadlock and discuss the criteria
for choosing a victim. Which would be the best choice of victim in this case?

time | transaction | action time | transaction | action

1 T1 A.read 9 T2 D.read

2 Tl B.read 10 T2 D.write
3 Tl A.write 11 T4 D.write
4 T2 B.read 12 T3 A.read

5 T3 D.read 13 T3 D.write
6 T1 B.write 14 T1 Commit

7 T4 B.read 15 T2 C.write
8 T2 C.read 16 T2 Commit

Fig.5

END OF PAPER

[25%]

[30%]

[20%]

[25%]

