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1 (a)

The first term in the Time-Independent Schrodinger Equation (TISE) represents

the kinetic energy of a particle multiplied by the wavefunction, , where % is the Plank
constant divided by 2w, m is the mass of the particle and x is position. The second term is
the potential energy of the particle, ¥, multiplied by the wavefunction and the third term is
the total energy of the particle, £, multiplied by the wavefunction. Therefore, the TISE is
really a statement of the conservation of energy: total energy of a particle is the sum of its
kinetic and potential energy. [20%]

(b)
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(i) We need to find a solution to the TISE for the potential given by

Ve w forx<OQandx>L
o for0<x<L

Outside the well (x <0 and x > L), the TISE becomes

_ndy
2m dx?

+woy =Ey,

which only has two possible solutions: y(x) = 0 or y(x) = co. However, as the
integral of |yf* over all space is unity, then w must be finite, and so the only
possible solution is that y(x) = 0.

Inside the well, the TISE becomes

which has the general solution
w = Acos(kx)+ Bsin(kx) ,

where 4 and B are unknown constants which much be determined by applying
boundary conditions. As the wavefunction must be single-valued and
continuous at all points, the wavefunctions for inside and outside the boundary
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must by the same at the boundary itself (x = 0 and x = L). Therefore,
w(0) = y(L) = 0. Substituting into the general solution at x = 0 gives 4 = 0, and
SO

w = Bsin(kx) .
Repeating for x = L gives

0 = Bsin(kx) ,

which means that £ can only take certain values given by

="
L

where 7 is an integer greater than 0. Finally, we must determine the unknown

constant B, which can be done by applying the fact that the integral of | y? over
all space is unity. Hence,

[[Wfdx=] B’ sinz(ﬁ—gx—jdx

Therefore,
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b
= (—i—) sin(l’%x—J : [40%]
(i) From the TISE in the potential well, we know that
n dy
Ey=— .
v 2m dx?
Therefore, for the ground state, where » = 1, we have that
2y &2V (i
—=—13| | sin|—
dx® dx° |\ L L
2 % 7Y
=—|—| | = sin| —
L L L
5]
dx? L v
and so
2 2
E= g—(%) [20%]
m

(iii) The probability of finding the particle in a small element of space dx as a
function of position is given by lyi* , which is platted for # =1 and n = 2 below:
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| 7)1
|0

Position
n=1 n=2

This is radically different to the classical equivalent in several ways. Firstly,
the minimum energy that the particle could possess classically is zero. At this
energy, the particle would not be moving. The particle could also possess any
energy above this minimum. In both cases, there would be an equal probability
of finding the particle at any position inside the potential well. It would
certainly not have ‘favoured locations’ as suggested by the quantum model.

[20%]
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2 (a) The Hall Effect can be used to determine both the sign and number density of
majority carriers in a semiconductor by applying a magnetic field, B, to a semiconductor
sample in a perpendicular direction to the flow of a current that is driven through the
material. The movement of carriers due to the current will result in the carriers
experiencing a force due to the magnetic field. This force will be perpendicular to each of
the current flow direction and the magnetic field. As a result, majority carriers will be
deflected towards one side of the semiconductor, and an electric field will result. In a short
space of time, an equilibrium will be reached when the force on the carriers due to the
magnetic field is balanced by the force due to the electric field. This will result in a
constant Hall voltage, V, being developed. The sign of the Hall voltage indicates the sign of
the charge of the majority carriers, and hence whether they are electrons or holes. Its
magnitude allows the carrier concentration to be determined.

(b) The force, Fp, acting on a carrier moving with a velocity, v, due to the magnetic
field will be

F, =evB .

The force, Fi, due to the electric field is

FE :eE:eVH .
w

At equilibrium, these two forces are equal, and so

evB = Vi
w
V, =vBw

However, the current, /, is related to the carrier velocity, v, by

[ =quwt

and so
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[15%]



v, =18 [35%]

qt

(c) We will assume that all acceptors are ionised. Boron is a p-type dopant in
silicon, and so we have holes as the majority carriers. As a result, p is equal to the doping
density of boron atoms (1 02 m™). Therefore,

g=pe=10"x1.602x10"" =1.602x10° m™>.

Hence,

_1B
qt
-9
_ 100><1(; x 0.1 y [20%]
1.602x107 x1x10~
Vy =624 pV

Vi

(d) The number density of electrons can be determined as the number density of
holes is known from the Law of Mass Action,

n;
n=—
p
!1016 !2
= 1022
n=10"m">

Therefore, the conductivity due to electrons is

o, =neu, =10 x1.602x10™" x 0.14 = 2.24 107°Q"'m™,

While that due to holes is
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o, =peu, =107 x1.602x107"" x0.048 = 76.9 Q'm™

Therefore, the total conductivity is essentially the same as that due to holes alone (76.9 Q~
"m™) and the ratio of the electron conductivity to that of the holes is 2.9x 1072,

If the number density of boron atoms was increased by a factor of 10%, then the ratio of
electrons to holes would change by 10*, to become 2.9x107'° . One might expect the
conductivity to also simply increase by a factor of 10> . However, we know that doping
densities over 10” m™ are very high, and that impurity scattering will have the effect of
reducing the mobility. Therefore the increase in conductivity will be less than a factor of
10%, and may be as little as 10, resulting in a conductivity between 700 and 7000 O'm?. [30%]
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3 (a) The position of the Fermi level in the n-Si can be calculated via:
E;-E
n=Nqe F__¢
c XP[ T )
Assuming that all donors are ionised, so that n=Np, then
22
Ep—Eq = kThn| 22| = 0.862x10"4.2981n —8%
N¢ 2-8x10%
Hence the work function of the n-Si is given by
e®y; = ey +(Ec — Er)
=4.05+0-15
and the built-in potential is
V. = ¢M ‘@Si
i e
VO o 0.6 V
Equilibrium band diagram for the junction:
Evac
metal (Db, )=V,
e(d)w-};i ) I\Ioooo (XXX X W
‘ ¢
EF' R R | s e dipow sy oy EF
7
 J [ EV

[30%]

(b) The barrier @y to electron flow from the metal to the n-type silicon is given
by

edp =e(dy — Xs5:) =0.75eV

Version:4



10

The reverse saturation current of the diode at room temperature can be estimated by

I=7x(02x1073)? x1.2x10% x 2982 exp ‘0‘75j
0.025

I=1.25n4

[20%]

(c) Due to the very large carrier density in the metal, the depletion width is
entirely dominated by the n-Si. Starting with the Poisson equation and given that V only
varies in the x direction across the junction

d2V_ -p —eNp
e gyE,  EgE,

Integrating this with respect to x and assuming that there are no electric fields outside the
depletion region, i.e. e= 0 at x = w, gives
_dV _eNp (w - x)

dx EpE

r

Integrating again using the condition that "= 0 at x = 0 gives

- eNp

= 2e0c, (2wx —x? )

Hence the built-in potential (potential at x=w) can be written as

eN Dw2
VO =
2898,

Rearranging with respect to w, and also considering the voltage V applied to the gate with

respect to the channel, gives
]
. (z (v, - V)J/z

eND
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4 (a) The flat band condition refers to flat conduction and valance bands in the
semiconductor, i.e. no band bending is present. The gate voltage required to achieve the flat
band condition is

¢m — ¢sc

Vip =

where @,, and @, are the work functions of the metal and semiconductor, respectively. For
real MOS capacitors, interface trapped charges, fixed oxide charges, oxide trapped charges
and mobile ionic charges will affect V5. Typically these charges are rolled into an effective
charge Q; and Vg is written as

¢m _¢sc __QL'
e C,

1

Vip =
where C; is the capacitance (per unit area) of the gate insulator.

Depletion occurs when a gate voltage is applied such that majority carriers are repelled
away from the channel layer in the semiconductor. For an p-channel enhancement
MOSFET, an n-type semiconductor connects source and drain and depletion occurs for a
negative gate voltage.

Evac evoxl
eV
q)m N~ E
st v sus

|eV,|] - E,

m e E,.

Lo O E,.

n
Ne— E

If a sufficiently large negative gate voltage is applied, then the bend bending may be
sufficient that the Fermi level is as close to the valence band in the channel as it is to the
conduction band in the bulk of the semiconductor. This is defined as the point where strong
inversion has occurred.
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[15%]
(b) The resistance of a small length of the channel 6x is
SR = _pox
t;, W

inv

where 1;,, is the thickness of the inversion layer and if the density of holes in the inversion

layer is piny, then
Ox

SR=—
pinvelthEtian

The free carrier charge density per unit area is

Qf = Dinveliny
Therefore
BR = O
O nrgW

We know that there is the same current /pg along the whole length of the channel, assuming
that there is no charge leakage through the oxide to the gate.

Therefore, the voltage drop across the small element of the channel 6x is

8V (x)=Ips0R
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Substituting for 0R, this becomes
I pgOx = Qf:thEWaV(x)
Substituting for O, from the given equation and integrating from the source to the drain
_[OLI psOx = ‘IOVDS CoulVs =V =V ()upsW0V (x)

C w V2
Ips = _LzFE—_{(VGS =Vr )VDS ——Di}

2
[35%]
(©) The expression for Ipg is valid up to Vps= Viss — Vr, where the parabola is at
its maximum.
At this point, the channel has been pinched off. [10%]
(d) The saturation current may be found from the equation for Ipg when Vpg =
Vas—Vr
2
C W(\Vas —V-
Ips (sat) __SoxHhFE ( GS T)
2L
The mutual transconductance in the saturated region is given by
Olps(sat) _ CoxtprW
= =- Vs =V
" Vs 1 Vs =Vr)
[25%)]
(e) For short channel devices, high fields can lead to a carrier velocity
saturation. For this case the saturated current follows the velocity saturation, i.e. no pinch
off is required, and hence a different expression for Ipg(sat) is required. [15%]
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(d) Total conductivity = 76.9 Q' m™ ; ratio of the electron conductivity to that of
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