ENGINEERING TRIPOS PART IIA

2009/2010

Crib for Paper 3C9: Fracture Mechanics of Materials and Structures

- Q1. (a) (i) The J-integral is defined as the loss in potential energy per unit crack extension. It is possible to define the potential energy for a non-linear elastic solid but nor an elastic-plastic solid. However, for a stationary crack without crack extension, the stress-strain field surrounding the crack tip in an elastic-plastic solid is very close to that in a non-linear elastic solid provided the stress-strain curves match.
- (ii) When a crack extends in a non-linear elastic solid, the drop in potential energy is released at the crack tip. In contrast, hysteresis occurs in the elastic-plastic solid and this lost energy does not appear at the crack tip in order to drive the fracture processes. The stress-strain fields associated with UNLOADING are very different for a non linear elastic solid and for an elastic-plastic solid. Since the J-integral is defined only for the non-linear elastic solid, it can only capture in an approximate way the growth of a crack. Thus, it is an approximate characterising parameter for a growing crack.

(b) (i)
$$F_Y = 2k(W - a)h$$

(ii)

The potential energy for a prescribed displacement is $\Psi = F_Y u = 2k(W - a)u$ (The potential energy for a prescribed force = 0)

(iii)
$$J = -\frac{\partial \Psi}{\partial a} = 2ku$$
 Now put $J = J_{IC}$ to get $u_C = \frac{J_{IC}}{2k}$

Q2. (a) The energy release rate G is the rate of energy release per unit crack extension for a linear elastic solid. Energy is released to the crack tip and drives any fracture processes there such as cleavage. Irwin demonstrated that $EG = K^2$ and thereby showed that the energy-approach and the mechanics-approach to fracture are actually the same. In order for fracture to occur, the energy criterion is necessary but not sufficient: a fracture mechanism must also be activated, such as cleavage of void growth.

G is an appropriate parameter under *small scale yielding* and is identical to the J-integral under these conditions.

(b) (i) Consider a beam of section $h \times h$. The second moment of area for bending is $I_1 = h^4/12$. The compliance of this beam is $C_1 = \frac{a^3}{3EI_1}$.

Consider a beam of section $2h \times h$. The second moment of area for bending is $I_2 = 8h^4/12 = 2h^4/3$. The compliance of this beam is $C_2 = \frac{a^3}{3EI_2}$. The total

compliance of the pair of beams is $C = C_1 + C_2 = \frac{9a^3}{2Eh^4}$.

(ii)
$$G = \frac{1}{2} \frac{P^2}{h} \frac{dC}{da}$$
 where $P = \delta/C$. Thus, $G = \frac{1}{2} \frac{\delta^2}{C^2 h} \frac{dC}{da}$

Now
$$\frac{dC}{da} = \frac{27a^2}{2Eh^4}$$
, giving $G = \frac{27}{4} \frac{\delta^2}{C^2} \frac{a^2}{Eh^5} = \frac{3}{2} \frac{\delta^2}{haC} = \frac{Eh^3 \delta^2}{3a^4}$.

The asymmetry in geometry leads to mixed mode loading at the crack tip and so the crack tip may kink. It will kink downwards towards the mid-plane, and grow as a local mode I crack.

(iii) As the crack gets longer, G drops and so crack growth will arrest.

- 3. (a) The ductility ε_f scales as $\varepsilon_f = f^{-1/2} \exp\left(\frac{-3\sigma_h}{2\sigma_Y}\right)$ for a steel containing a volume fraction f of inclusions, where σ_h is the hydrostatic stress and σ_Y is the yield strength. Ahead of a crack tip we have $\sigma_h \approx 3\sigma_Y$. Also, $J_{IC} \approx 3\sigma_Y \ell \varepsilon_f$, where $\ell \approx R/\sqrt{f}$ is the inclusion semi-spacing in terms of inclusion radius R. Thus, a high f lead to a small ε_f and a small ℓ and thereby to as low toughness.
- (b) Under small scale yielding conditions, an outer K field exists beyond the plastic zone and can thereby be used as a valid failure criterion. In contrast, when plastic collapse occurs, no K field exists.
- (c) After an overload cycle, residual compression exists ahead of the fatigue crack. The fatigue crack nibbles through this zone of compression and this leads to an elevation in the crack-opening-stress-intensity factor. Consequently, the effective stress intensity range ΔK_{eff} drops and the crack growth rate retards, and may even arrest.
- (d) As the crack grows, plastic dissipation occurs within the plastic zone and this elevates the observed toughness by a large multiplicative factor above the surface energy.

4. (i) When a < W, we have a net stress σ_{NET} on the crack of uniform value $\sigma_{NET}(t) = \sigma_Y - \sigma(t)$ with $\sigma(t)$ varying from $\sigma(t) = 0$ to $\sigma(t) = \sigma_Y / 2$.

Thus,
$$K_{\min} = \frac{\sigma_Y \sqrt{\pi a}}{2}$$
 $K_{\max} = \sigma_Y \sqrt{\pi a}$ and $\Delta K = \frac{\sigma_Y \sqrt{\pi a}}{2}$

So at a=W, we have $\Delta K = \frac{\sigma_Y \sqrt{\pi W}}{2}$.

When a > W, the loading on the crack faces comprises the sum of two contributions:

Problem A: uniform compression of $-\sigma(t)$ over crack giving $K_A = -\sigma\sqrt{\pi a}$

Problem B: tensile loading of a crack of length 2a over the central portion of length 2W by a value of $\sigma_Y - \sigma(t)$. This generates $K_B = \frac{2\sigma_Y a}{\sqrt{\pi a}} \arcsin\left(\frac{W}{a}\right)$ according to the datasheet. Hence:

$$K(t) = K_A + K_B = -\sigma \sqrt{\pi a} + \frac{2\sigma_Y a}{\sqrt{\pi a}} \arcsin\left(\frac{W}{a}\right)$$
giving
$$K_{\min} = -\frac{\sigma_Y}{2} \sqrt{\pi a} + \frac{2\sigma_Y a}{\sqrt{\pi a}} \arcsin\left(\frac{W}{a}\right)$$
and
$$K_{\max} = \frac{2\sigma_Y a}{\sqrt{\pi a}} \arcsin\left(\frac{W}{a}\right)$$
Also,
$$\Delta K = K_{\max} - K_{\min}$$

Now, for a slightly bigger than W, K_{\min} is negative.

(ii) Consider W/4 < a < W/2

Then, from (i) we have $\Delta K = \frac{\sigma_Y \sqrt{\pi a}}{2}$.

$$\frac{da}{dN} = C\Delta K^n = C \left(\frac{\sigma_Y \sqrt{\pi a}}{2}\right)^n$$

Integrate this to obtain

$$\left(\frac{n-2}{2}\right)\left[\left(\frac{4}{W}\right)^{(n-2)/2} - \left(\frac{2}{W}\right)^{(n-2)/2}\right] \frac{da}{dN} = C\left(\frac{\sigma_Y\sqrt{\pi}}{2}\right)^n N$$

(iii) The overall maximum value of K_{max} is achieved at a=W, giving

$$K_{overall-\max} = \sigma_Y \sqrt{\pi W}$$

Equate this to K_{IC} .

(iv) A stress relief will remove the tensile residual stress of value σ_Y , and consequently the crack is subjected to compressive cyclic loading. The crack will not advance in fatigue.

N A Fleck 2010