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Q1. (a) (i) The J-integral is defined as the loss in potential energy per unit crack
extension. It is possible to define the potential energy for a non-linear elastic solid but
nor an elastic-plastic solid. However, for a stationary crack without crack extension,
the stress-strain field surrounding the crack tip in an elastic-plastic solid is very close
to that in a non-linear elastic solid provided the stress-strain curves match.

(ii) When a crack extends in a non-linear elastic solid, the drop in potential energy is
released at the crack tip. In contrast, hysteresis occurs in the elastic-plastic solid and
this lost energy does not appear at the crack tip in order to drive the fracture
processes. The stress-strain fields associated with UNLOADING are very different
for a non linear elastic solid and for an elastic-plastic solid. Since the J-integral is
defined only for the non-linear elastic solid, it can only capture in an approximate way
the growth of a crack. Thus, it is an approximate characterising parameter for a
growing crack.
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The potential energy for a prescribed displacement is ¥ = Fyu =2k (W - a)u
(The potential energy for a prescribed force = 0)

(iii) J=——8—z=2ku Now put J =J o toget uc _Jic
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Q2. (a) The energy release rate G is the rate of energy release per unit crack
extension for a linear elastic solid. Energy is released to the crack tip and drives any

fracture processes there such as cleavage. Irwin demonstrated that EG = K 2 and
thereby showed that the energy-approach and the mechanics-approach to fracture are
actually the same. In order for fracture to occur, the energy criterion is necessary but
not sufficient: a fracture mechanism must also be activated, such as cleavage of void
growth.

G is an appropriate parameter under small scale yielding and is identical to the J-
integral under these conditions.

(b) (i) Consider a beam of section 4 x h. The second moment of area for bending is

3
I = h* /12. The compliance of this beam is Cj = L
3EL
Consider a beam of section 24 x . The second moment of area for bending is
3
I, = 8h* /12 =2h* /3. The compliance of this beam is C, = 5%—. The total
2
. 94>
compliance of the pair of beams is C =Cy+C; = T
2Eh
1 P? dC 1 6% dC
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The asymmetry in geometry leads to mixed mode loading at the crack tip and so the
crack tip may kink. It will kink downwards towards the mid-plane, and grow as a
local mode I crack.

(iii) As the crack gets longer, G drops and so crack growth will arrest.
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3. (a) The ductility & scales as ¢ = f 172 exp[ _2 ] for a steel containing a
Oy

volume fraction f of inclusions, where o, is the hydrostatic stress and oy is the yield

strength. Ahead of a crack tip we have oy, ~30y . Also, Jjc ~3oyley, where

L~R/ \/7 is the inclusion semi-spacing in terms of inclusion radius R. Thus, a high
flead to a small & ¢ and a small # and thereby to as low toughness.

(b) Under small scale yielding conditions, an outer K field exists beyond the plastic
zone and can thereby be used as a valid failure criterion. In contrast, when plastic
collapse occurs, no K field exists.

(c) After an overload cycle, residual compression exists ahead of the fatigue crack.
The fatigue crack nibbles through this zone of compression and this leads to an
clevation in the crack-opening-stress-intensity factor. Consequently, the effective
stress intensity range AK g drops and the crack growth rate retards, and may even

arrest.

(d) As the crack grows, plastic dissipation occurs within the plastic zone and this
elevates the observed toughness by a large multiplicative factor above the surface
energy.



4. (i) Whena < W, we have a net stress o gy on the crack of uniform value

oner(t)=oy - o)
with o(f) varying from o(t)=0 to olt)=0y /2.
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Thus, Kpin = Kinax = O'Y\/;C; and 4K =

N

So at =W, we have 4K = 2—2—.

When a > W, the loading on the crack faces comprises the sum of two contributions:
Problem A: uniform compression of — O'(l) over crack giving K 4 =—-o+ma

Problem B: tensile loading of a crack of length 2a over the central portion of length
2o0ya

Jma

2W by a value of oy —of(¢). This generates Kp = arcsin(—W—) according to

a
the datasheet. Hence:
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giving Knin = ———Ol—«/ﬂa + 2oya arcsin(—W—j
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and K =L _—arcsin| —
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Also, AK = Kipax — Kiin

Now, for a slightly bigger than W, K, is negative.

(ii) Consider W/4 <a <W/2
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Then, from (i) we have 4K =

Integrate this to obtain
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(iii) The overall maximum value of K, is achieved at a=W, giving

Koverall—max = oy NaW
Equate this to K.

(iv) A stress relief will remove the tensile residual stress of value oy, and

consequently the crack is subjected to compressive cyclic loading. The crack will not
advance in fatigue.
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