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(a) To check open-loop stability, evaluate the characteristic polynomial:

A+4 -2 0
detQMI—A) = | -2 A+6 -2 (1)
0 -2 X+4
- (A+4)‘)‘j_26 )\f4l—4()\+4) @)
= A+ +68)(A+4)—4-4] (3)
= (A +4)(\? + 10X+ 16) (4)
= A+HA+2)(A+8) (5)

In the last step the quadratic factor has been factorised by inspection, but that is not necessary.
Already from (4) it can be seen that all the roots are in the left half-plane — or, less efficiently, the
cubic polynomial can be multiplied out and the Routh-Hurwitz criterion then applied.

The roots all have negative real parts, so the system is open-loop stable.
(b) We have & = Az + Bu, and to hold temperatures constant we need £ = 0. So we need

0 = AZoo + Buco and 2o = [25,25,25]7. (6)

-4 2 0 25 50
Bugw=—| 2 -6 2 25 | = | 50 (7)
0 2 -4 25 50

Now B is diagonal so very easy to invert, and we get

Hence

Uoo = [p1,p2,p3]T = [10,25,25]7 (watts, if the units are standard). (8)

(c) Suppose that Av = Av for some eigenvalue A.
By definition we have

2
eAt=I+tA+§A2+--- (9)
S0
2
ety = [I+tA+%A2+~--]U (10)
2
= v+t/\v+§/\2v+--- (11)
2N
= <1+t)\+—‘“2!—+"‘>’0 (12)
= eMy (13)

Hence v is an eigenvector of et (with eigenvalue e?).

Some candidates worked with A = WAW ™1, where W is the matriz of eigenvectors. This is ok,
except that W= does not always ezist, so the above solution is better.



(d)

To check that v is an eigenvector of A, evaluate Av and check that it is of the form Av:

—4 2 0 1 -2 1
2 -6 2 1|=] —2|=-2|1 (14)
0 2 —4 1 -2 1

so [1,1,1]7 is an eigenvector of A, with eigenvalue —2.
Now if the initial wafer temperature (above ambient) is z(0) then, with v = 0, its temperature will

evolve as
z(t) = e*'z(0) (15)

If its initial temperature is uniform then z(0) = 6p[1,1,1]7, where 6 is the initial temperature of
each segment. But [1,1,1]7 is an eigenvector of A, hence also of e4?, by part (c).

Hence
1

z(t) = e | 1 (16)
1

Now u = —Kz, so & = (A— BK)z. But BK = cI, so & = (A — cI)z, and z(t) = e(A=<Dix(0).

But (A—cl)v = Av—cv = (A\—c)v if v is an eigenvector of A with eigenvalue A. Hence [1,1,1]7 is an
eigenvector of A — cI, and so, by the same argument as in part (d), z(¢) will remain uniform under
the state feedback u = —Kz if BK = cI and x(0) = 6o[1,1,1]7. (In fact the closed-loop evolution
will be z(t) = fpe~27941,1,1]T.)

Some candidates checked that v is an eigenvector for the specific A — cI matriz that they had, which
is also ok.

Every point on the real axis is to the left of either 0 or 4 poles (and there are no zeros). Hence no
point on the real axis is on the root locus.

Number of poles: n = 4. Number of zeros: m = 0. Hence there are n — m = 4 asymptotes.

Angles of asymptotes to positive real axis are (2k + 1)7/4, namely 7/4, 3w /4,57 /4, 7n /4.

Point of intersection of asymptotes with real axis is (-8 +0)/(4 — 0) = —2.

So the asymptotes are as shown in Fig.1.

In fact, each asymptote is a branch of the root locus, as can be seen from the following argument.
Consider an arbitrary point on one of the asymptotes, such as sp = —1 4+ j. Then argGi(so) =
—4darg(so +2) = —4 x (7/4) = —n. Since this is an odd multiple of 7, s¢ is on the root locus.
A similar argument holds for any point on each of the 4 asymptotes. Thus Fig.1 in fact shows
the root-locus diagram, not just the asymptotes. Hence the root-locus diagram consists entirely of
straight-line segments.

Note: The previous paragraph, about the asymptotes, is not a necessary part of the solution. One
could jump straight to the final argument.

A pair of poles (sg,$p) corresponds to damping factor 1/v/2 if argsy = 57/4. Hence, from the
root-locus diagram, we must have so = —1 + j. Then

1G1(s0)| = 1/]s0 +2/* = 1/V2" = 1/4. (17)

But for sg to be a closed-loop pole requires that 1 4+ k1G1(sg) = 0, hence k1 = 1/|G1(s0)| = 4.

For G2(s): Every point on the real axis to the left of —4 is to the left of 5 poles and zeros. Hence
every such point is on the root locus. Every point to the right of —4 is to the left of 0 or 4 poles and
zeros, hence is not on the root locus.

The number of asymptotes is n —m = 4 — 1 = 3, and the zero at —4 attracts one branch of the root
locus.

Angles of asymptotes to positive real axis are (2k + 1)7/3, namely 7/3, 7, 57/3.

Point of intersection of asymptotes with real axis is (-8 +4)/(4 — 1) = —4/3.

Breakaway points are at values of s for which G4(s) = 0:

S s 4 —4(s 8 8




Figure 1: Root-locus diagram for Q.2(a)

when
(s+2)°[(s+2) —4(s+4)] = —(s+2)%3s+14) =0 (19)

namely when s = —2 and s = —14/3.
Thus the root-locus diagram looks something like Fig.2.

Figure 2: Root-locus diagram for Q.2(c)

(d) i Let r be the reference input to the feedback loop, then the error is &(s) = 7(s) — L(s)é(s). Hence
1
I 9
o) = 115" (20)
Now by the Final Value Theorem, and assuming 7(s) = 1/s, we have

. PN 1 1 1
Jim e(t) = lim se(s) = lim 3= 5 = T 10y
(and 1+ L(0) # 0 since the closed loop is assumed to be (asymptotically) stable). (Alternatively,
an argument about finding the frequency response at frequency 0 can be used to get the same
result.)
In most practical cases the feedback design is such that L(0) > 1, so 1+ L(0) ~ L(0), and hence

(21)

tlir(x}c e(t) = ﬂ(—)—) (22)



ii. In the case L(s) = k1G1(s) we have L(0) = 4/16 = 1/4 < 1, so the approximation cannot be

used in this case, and we have

1 4
lim e(t) =

== 23
Jim o) = 5 =5 (23)

Comment: In this case the closed loop is asymptotically stable and fairly well damped (damping
factor 1/4/2 is a bit low, but commonly accepted in chemical process industries). However
the steady-state error is very large (80%) which would be unacceptable in most applications.
Furthermore the gain |L(jw)| decreases monotonically with w (as can be seen by considering
the Bode plot of G1(s)), so is low at all frequencies. Hence very poor disturbance rejection will
be obtained at all frequencies. The open loop is already stable, so the feedback is not required
for stabilisation. In summary this is a very poor design and there would not be much point in
having such a feedback system with these characteristics.

3.

(a)

The controllability matrix is

P=[B,AB] = [ bol “glbl ] (24)

which has rank = 2, since b; # 0. Thus the condition for controllability is satisfied.

A state-feedback scheme is § = —Kx, where K = [k1,k2]. Substituting this into the equation
% = Az + B gives # = (A — BK)z. The closed-loop poles are the eigenvalues of A — BK. We have:

A—BK:[ail aéQ:I*[%ljl[kl k2]=[a11_1b1k1 GlQ‘[)ble (25)

Now we can proceed in one of two ways:
Either: Find the characteristic polynomial of A — BK:

A—ay1 +biki —aiz + biks

) N = A2 4 A(—a11 + bik1) + (—a12 + bika) (26)

det(AM — A+ BK) = ‘

But this should be the same as (A + 1)2. Hence
—a11+biki =2 and —aix+bika=1 (27)

Or: Use the fact that the sum of eigenvalues is the trace, and the product of eigenvalues is the
determinant:

trace(A - BK) = a11 — blk'l = —2, det(A — BK) = —ajiz2 + b1]€2 =1 (28)
In either case we get:
2 1
ky = aiy + 7 oy = M (29)
bl bl

Integral action may be obtained by introducing a third state variable which is the integral of the
error: @3 = 04 — 0 if 64 is the demanded pitch angle (if 64 = 0, as in this case, then @3 = —6). The
dynamics are now augmented as follows:

é aj;p  ai12 0 9 bl 0
6 =1 1 0 0 O |+ 0 |6+ |0 |6q (30)
ig 0 -1 0 T3 0 1

State feedback of the form § = —Kz is still used, but K now has 3 elements, and there are 3

closed-loop poles to be placed.

If K is such that the closed loop is asymptotically stable then the system will converge to an equilib-
rium in which &3 = 0, and hence § = 83. The corresponding equilibrium value of § will be whatever is
required for this to occur. For this scheme to be effective, the ‘disturbances’ due to centre of gravity
changes, force imbalances etc, must be piecewise-constant with only occasional jumps, or changing
very slowly in relation to the desired closed-loop dynamics.



(d) Proceeding as in part (b), substituting the given values into (30):
-2 05 0 1 —2—k1 05—ky —ks
A-BK=| 1 0 0|—-|0|[k k k)= 1 0 0
0 -1 0 0 0 -1 0

This has characteristic polynomial:

-1 A 0
0 1 A

A+2+k1 ko—05 k3
= (A+24+ k)M 4+ 1[A(kg — 0.5) — k3]

A3 + (2 + kl))\2 —+ (kz — 05))\ — ks
(A+1)3
M 43X +30+1

So comparing coefficients we have

ki=1, koa=35, k3=-1

(31)

(32)
(33)

(34)
(35)

(36)

4. (a) A system is observable if the initial condition z(0) can be inferred from observations of u and y over

some interval of time 0 <t < T.

Several alternative meanings also acceptable, but some precision is needed. For example, if x(to) is

to be inferred then the time interval must include to.

A test for a linear system being observable is to test whether rank(Q) = n, where n is the state

dimension and

C

CA
Q= .
CAn—l

(37)

(Alternatively, if the system is asymptotically stable, one can test whether the observability Gramian

is non-singular.)
(b) If u(t) = 0 for all ¢ then y(t) = Ce“*zq. Therefore

/ ly(®)|Pdt = / y()Ty()dt = / (Certao)T Certagdt
0 0 0

0

[ee)
/ eATtOT CeAtat To = 22 Wozo  (38)

(c) Let 21 = 0, zp = 6, and = = [z1,22]7. Then the given differential equation is equivalent to the

standard linear system in state-space form, if

A:[O 1 ] B:[ 0 ] C=[1 0]

—e -1

Check of observability:

which has rank = 2 always (independently of €).
(d) i. Using the hint, and recalling that det/dt = Ae* = ¢4 A, we have

% [eAthTCeAt:I — ATeAthTCeAt + eATtCTceAtA

(39)

(40)



ii.

Integrating both sides:

[eAchTceAt]j - /0 b [ATeATtCTceAt + eATtCTCeAtA] dt (42)

= AT / T ATU T oAty 4 / T ATIOT Gt g A (43)

= ATI/IZ +W,A ’ (44)

But [eATtCTCeAt]ZO = —CT(C follows from the fact that the observability Gramian is only

At _, 0 ast — oo.

defined for asymptotically stable systems, so e
Substituting the values of A and C' into the given matrix equation, and noting that wia = w21

(since W, is symmetric) gives

0 —e w11 W12 w11 W12 0 1 _ -1 0
|:1 —1][1012 w22]+[w12 1l)22:|[—6 —1]—[0 0] (45)
which is the same as
—€W12 —€Wa2 I —€wWi2 Wil —Wi2 | _ -1 0 (46)
w1l — Wiz Wiz — W22 —€Wg2 Wiz — W22 0 0
or
—2611}12 w11 — W12 — €W _ -1 0 (47)
w1 — Wiz — EWas 2(w12 — wa2) 0 O
Hence we have
w ! w wig + € ! + ! (48)
w _ - = W = — = W = — —
125 50 22 127 50 11 12 2= 5 T35
or
1 1+¢ 1
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. (b): w=1[10,25,25]".  (d): z(t) = e"**Gov, where 0o is the initial temperature.

. (b): ky =4. (d)(ii): Steady-state error = %7‘0 if ro is the amplitude of a step reference signal.

-®XK=F%%%#} ): K =[1,3.5,—1].

(d)(i): W, = & [ e H



