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1 (@  Define the power spectrum for a discrete time random process and give an
interpretation for the power spectrum in terms of signal power. Detail any conditions that
should be satisfied for a random process to have a power spectrum. [20%)]

Solution:

For a wide-sense stationary random process { X}, the power spectrum is defined as
the discrete-time Fourier transform (DTFT) of the discrete autocorrelation function:

() = Y ryxln]e (1)

m—=—oo

Power spectrum for a random process

where Q = @7 is used for convenience.

The condition is that the process is wide-sense stationary.

(b) If two wide-sense stationary random processes {An} and {B,} are
independent, show that the power spectrum of their product X;, = A,B, can be expressed

as a convolution:

1 4=« . ,
o /_7r Sa(e™)Sp(e/ 0D 40

where 54 and Sp are the power spectral densities for the two independent processes. [30%)]
Solution:

First find autocorrelation function:

E[XH n+1] = E[AnBliAn+an+l]
= E[ApApt ) E[B,B, ) [since A and Bare independent]

= raalllrppl]]

Now, take DTET of this to get power spectrum (from first principles, but could quote

(cont.



the result):
0, ~ 16
Sy(e) =3, raalllrppllle™’
[=—c0
SR T 16
=y gy / Sa(e*) et dQrgpllle " (subst. with inverse DTFT for ra4)
= oo TJ)-n
e & —jl(6-0)
*2—5'/_” Sa(e ) Y rpglle dQ

J=—oo

1 [+n . o
:EE/% Sa(e)Sp(e/0- D) 4oy

as required.

() A music synthesiser generates a sound by random amplitude modulation of a
tone as follows:
Xn=(1+Ap)cos(nan T+ ¢)

where A;; is a zero mean, wide-sense stationary random process and @y is a constant
frequency.

M ¢=0

Solution:
E[Xy] = E[(1+ Ap)] cos(nwy T + ¢) = cos(nog T+ ¢)

which depends on n, hence not Wide-sense stationary.

(i) ¢ is a random variable, independent of {A;} and uniformly distributed
between — 7 and +7

[30%]

Solution:

E[Xn) = E[(1+ Ap)| E[cos(nwy T+ ¢)] = E[cos(nawy T+ ¢)] (since both terms are independent)
Now:

Elcos(nwy T+ ¢)] = E[cos(nwy T) cos(¢)] — Esin((nwy) T)sin(¢)] =0
(since Efsin(¢)] = E[cos(¢)] = 0)

(TURN OVER for continuation of Question 1



Hence mean is constant.

Test autocorrelation function:

E[XpXn11] = E[(1+ An) cos(nan T+ ¢)(1+ A,y p) cos((n+ ey T+ ¢)]
= E[(14+Ap)(1+ A,y )] Elcos(nwy T+ ¢) cos((n+ 1wy T+ ¢)]
= 0.5(1 4+ rgal])(Elcos((2n+ 1w T+ 2¢)] + E[cos(1ay T))
= 0.5(1 + rg4[l]) cos(layT)

which does not depend on n. Also ryy[l] < e as long as ry4[0] < « which it is, as it is
WSS itself, so the whole process is WSS.

(d)  Describe and sketch the power spectrum of the process { X} with phase as in
part (b)(ii) when

(i) Ap=cos(nwT/10+ 6), and 6 is a random variable, independent of ¢,
and uniformly distributed between —m and +7.

(i) {As} is a second order autoregressive process having poles at
0.9exp(4ianT/10).

Solution:

The power spectrum is obtained from the result in part a). In this case we must
convolve the power spectrum of the random-phase cosine (which is a train of delta
functions centered on gy + n2r/7), with the power spectrum of 1+ A,, which is a
delta function at @ = 0 plus the power spectrum of {A4,}. Hence we get the following:

(i) Here ry4[/] = 0.5 cos(lwyT/10) and hence the power spectrum of 1+ A, is
0(Q)+0.58(Q+awyT/10)

This, once convolved with the power spectrum of the random phase cosine, leads to a
power spectrum:

(ii) Here the power spectrum of A is the power spectrum of the AR process, having
a peak close to the pole frequency. Otherwise unchanged, leading to:

[You may use the result that the DTFT of cos(wynT) is 0.578(w — ax) for values
of @ between 0 and /7]

(cont.

[20%)]
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2 (@  The Discrete Fourier Transform (DFT) is typically implemented using a Fast
Fourier Transform (FFT) algorithm. Assuming that the number of data points / is even,
split the summation in the basic DFT equation into two parts: one for even n and one for
odd 1, and then show that the DFT values X, and X p+N/2 may be expressed as

Derive Ap, B, and IV in the above expression, and thus define the FFT “butterfly”
structure. [30%]

Answer. Let us take the basic DFT equation:

N-1 o
Xp: Z X[]e_JWIIp, p: 0,...,N* 1

n=0

and split the summation into two parts: one for even n and one for odd n

yo1 ¥
— % (2n & (2n+1
X, = 2 Xppe J57( )P+ Z Xppp 1€ J5F2n+1)p
n=0) n=0
51 2 7-1 2
. 2r 2T
~ J750p _i2r ~ jwsnp
Xp: Z X2n€ NZW e /WP 2 X2n+1€ iz
n=0 n=0
_ D
Xp=Ap+WPB,
2n
—JNT7z P
Ap: Z X2n€ N7z
n=0
;2
~J NP
Bp: 2 X2n+1€ N7z
n=0

(TURN OVER for continuation of Question 2
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2T
W=e /NP

Now take the same equation and split the summation into two parts again: one for even n
and one for odd n

N N

o meap, J2E2n+1)
Xp: 2 X2n€ NP 2 X2n+1¢€ TN P

n=0 n=0

and evaluate at frequencies p+ N/2 one for even nand one for odd n

N—l Nl

7 o o7 on
Xoinj2= S e SR 2 (peN/2) | S Xopiie JSF(2n+1)(p+N/2)
n=0 n=0
g1 2 ¥ )
’—‘n . ]'[ \ N
~in (PN | - B (pN/2 —EE () (p+N/2)
Xp+/\//2'— Z xppe " N/? +e I3 (p+N/2) 2 xoppre N2
11:0 n:O

Simplify terms as follows

_i2n N/2 _2m ., _g2mN2 2 _2n,
e Iz pNI2) _ SIREe TR T WP e e g N2 P

, , 2nN/2 , , .
oS (pEN/2) e—J%\’%peﬁ—w/— o IF P — o JFP
Hence,

J-1 2 F-1 2

4 : LTT
—jEsnp  _2nm — J375 1P
Xpinp= 2, xone NPT —e TN N xppiqe TNE
n=0 n=0
Xpinj2=Ap—WPBp

This defines the FFT butterfly structure.

(b) If Nisa power of 2 the process above can be repeated several times resulting

in a radix-2 FFT algorithm. Determine the number of such stages required, the number

of “butterfly” computations per stage and the total number of complex multiplications if

N = 64. [20%)]
Answer If g is even the same process can be carried out on each of the g

point DFTs to further reduce computations. It can be seen that if N = 2M this process

can be repeated M times resulting in M stages of the algorithm, each stage using N/2

“butterflies”. Each butterfly is defined by

(cont.
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Xpinj2=Ap=WPBp

where WP are pre-computed and stored. Thus, one “butterfly” requires 1 complex
multiplication and the radix-2 N-point FFT requires (NV/2)Iogy N complex multiplications
which for N = 64 results in 192 complex multiplications.

(00 A wide sense stationary discrete time random process {X,} has
autocorrelation function

rxx]0] = 1, rxx[£1] = 0.5, 0, otherwise.
The process is filtered through a first order noisy channel to give:
yn = X[] - O‘ZXH”I "i" V]]

where v, is white noise having variance 0.4.

(i)  Determine the autocorrelation function of the noisy filtered process
{Y,} and the cross-correlation function between { X} and {¥;}. [20%]

Solution:

FXY[IH] = E[Xnyner]
= E[Xg(Xptm— 02X -1+ Vit m)]
= ryx|m] — 0.2ryx[m— 1] since X is uncorrelated with V

Hence, from given values of ryyx we have

0.5, m=—1

0.9, m=10
rxylml=<¢03, m=1

-0.1, m=2

0, otherwise

Now, for ryy:

ryylm] = Elynyn+m| = E[(xn—0.2x,_1 + Vi) Y+ m)
= ryy[m] —0.2rxy[m+ 1]+ ryy[m] since V is uncorrelated with X

(TURN OVER for continuation of Question 2
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Hence from values of Ryy and ryy[m] = 0.46[m]:

—0.1, m=42
0.32, m=El
ryy[m| =
1.24, m=0
kO, otherwise

(ii) Determine the coefficients of a second order Wiener filter for extraction

of { Xy} from measurements {¥,}. Compare its expected mean-squared error

with the expected mean-squared error between { Y} and {X;}. [30%)]
Solution:
Set up the Wiener-Hopf equations as in lecture notes with P= 2:

where:

Ry =

ryy[0] ryy[l] | | 1.24 0.32
ryy[1] ryy[0] | | 0.32 1.24

The coefficient vector can be found by matrix inversion:

h=Ry lryy=1[0.67 0.23]7 )

For the optimal solution, lecture notes give the Expected squared error

as.

Jmin = E{EHXD]

P-1
= E[(dn— Z hpyn—p) Xp)
p=0
P-1
= rxx[0] — Y hpryx[p)
p=0

= rxx[0] =y b = rxx[0] — el xRy lryx=1-067x0.9-0.23 x 0.5 =0.28

(cont.



Compare this with the expected squared error between Y and X:

E[(Yn— Xn)zl =E[(Xp—0.2X,_1+vn— Xn)z]
— 04E[X, 1]+ E[)
=04x1+04
=0.8

i.e. we get a significant improvement from using the Wiener filter as
compared with just taking the measured Y.

3 (@) Describe the direct form I structure for implementation of infinite impulse
response (IIR) filters. Explain why implementing a digital filter in direct form I is
satisfactory in Matlab where double precision floating-point is used but is not usually a
good idea in fixed point implementation. What are other alternative realization structures
of IIR filters and their potential advantages? Describe the direct form II structure and
explain why it may be preferable to the direct form I implementation.

Answer. The transfer function of the [IR filter is

211110 ka“k
H(Z) = N —k
L+ arz

The direct form I implementation is straightforward and is illustrated in Figure 1.

In fixed point or VLSI implementation, direct form is not usually a good idea
because one has often severe speed and power consumption constraints.

If speed is the main concern, then if multiplications take longer than additions, we
aim to reduce the number of multiplications; otherwise to reduce the total operation count.
The area of a fixed-point parallel multiplier is proportional to the product of the coefficient
and data wordlengths, making wordlength reduction advantageous.

Hence much work has gone into structures which allow reductions in
*the number of multipliers; or
sthe total operation count (multipliers, adders and perhaps delays); or

edata or coefficient wordlengths

(TURN OVER for continuation of Question 3

[30%]
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Fig. 1

If power consumption is the concern, then reducing total operation count and wordlength
are desirable. Since general multiplication takes much more power than addition, we
try to reduce the number of multiplications, or to replace general multiplications by, for
example, binary shifts.

The alternative structures for IR filters implementation include parallel, cascade
and feedback implementations. In general, in fixed-point implementation alternative
structures may offer the following advantages: decreased number of multiplications or
overall computational load, reduced sensitivity of the response to coefficients imprecision

(coefficient quantisation), reduced quantisation noise among others.

The direct form II structure is obtain if one looks at a transfer function as a cascade
of H (z) and H; (z) where (N = M for convenience in this example)

1
1 +ZQ/:1 akz‘k'

N
Hy(z) =Y, bz ¥, Hy(2)
k=0

Hj (z) can be realized with a parallel structure and /5 (z) with a feedback structure (where
the Zﬁ(vzl ayz ¥ part in H (2) can be realized with another parallel structure). Putting all
together, we obtain the block diagram displayed in Figure 2. Direct form II is preferable

to Direct form I as it requires a smaller number of memory locations.

(b)  The Goertzel algorithm is often used for detection and measurement of single
sinusoidal tones since it computes a single Discrete Fourier Transform (DFT) component.
The Goertzel algorithm is implemented as a second-order IIR filter with two real feedback

(cont.
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Fig. 2

coefficients and a single complex feedforward coefficient. The transfer function of the
Goertzel filter is .
1+byz-
H(z) = + b1z '
l+aiz 1+
where the filter coefficients for the mth bin of an N-point DFT are

-2
by =—e JTM g =2 cos(2mm/ N)

The filter is to be implemented in direct form II. Determine the coefficients of the filter

for m= 15 and N = 64 and sketch the implementation.

Answer. The coefficients can be calculated as follows
-2 2T ,
by =—e JNM = ¢ TG0 = /4T3 — 0,098+ j0.995

a; = —2cos(2nm/N)=-2cos(2m15/64)=-0.196

Direct form II implementation of the filter is illustrated in Figure 3.

(c)  Show that the Goertzel filter in part (b) is equivalent to a first order complex
all-pole filter having a single pole at z= e/ %\i%m. Hence show that, assuming the input
signal is zero prior to n = 0, the Goertzel algorithm delivers the expected DFT coefficient
(up to a simple complex scale factor) after N data points have been passed through the
filter.

(TURN OVER for continuation of Question 3

[30%]

[40%]
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[Hint for part (c): consider the poles and zeros of the filter, which will lead to a
simplification of the transfer function.]

Solution:

There is a pole that cancels with the zero of the filter leading to:

1
H(z) = =
1 et /N1

Consider this simplified first-order all-pole version of the Goertzel filter with input
data x;:

21
Yn=Xn+ et W n—1
Now, with y,; = x, = 0 for n < 0:
0= X0
2
yi=x1+e /Ny

2T 27
o = xp+ 6’+‘]7Vm()(1 + e—l—ijXO)

—1 o7 21 N-1 21
IN-1= D, xpe SN0 b m(N-1) S xpe S
n=0 n=0

— TN DET (1)

by inspection (could be proved by induction, but not necessary). Hence shown
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4 Consider a binary classification problem with scalar real-valued observations x, and
class labels y € {0, 1}. Assume that p(x|y = 0) is a Gaussian distribution with mean 0
and variance 2, and p(x]y = 1) is a Gaussian distribution with mean 1 and variance 2.
Furthermore, assume that p(y=0) = p(y=1) =1/2.

(@ Compute the probability that given an observation x = 2, its corresponding
class label is y = 1.

(b)  Derive the general expression for p(y = 0|x) as a function of x, and discuss
how this relates to logistic classification.

Now assume that you fit a maximum likelihood Gaussian distribution p(x]y = 0)
with mean pg and variance Gg to the observed data with label y = 0, and similarly you
fit a separate maximum likelihood Gaussian distribution p(x|y = 1) with mean u; and
variance (712 to the observed data with label y= 1.

(c) Describe several ways in which the above procedure differs from maximum
likelihood logistic classification, paying particular attention to the role of the variances
and likelihood that is being optimised.

ANSWERS

(a) By Bayes rule:

px=2ly=1)p(y=1)
px=2]y=1)p(y=1)+ plx= Z?y“ 0)p(y=0)

Amewl JE L2y, b

ply=1lx=2) =

T3 exP{ *—2}~g+ﬁ xp(~3 7} 2
exp{— z—z“}
eXP{"z—"ﬁzl‘}-FeXP{ 2—20‘)‘}

eXP{—g}

exp{—g} +exp{—3}
1

1+e3/8

(TURN OVER for continuation of Question 4

[30%]

[40%)]

[30%]
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(b) Again by Bayes rule:

exp(~$2)

P(}/ZOIX) = N
1
ol 32} +exp{ 1)
1
B 1+exp{%x2 — %X2+f~%}

1
1+exp{—ff~ é}

This is a logistic function, exactly as in logistic classification. So the classification
probabilities are equivalent to that of logistic classication.

(cont.
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(c) There are a number of ways in which these two procedures differ:

(i)they optimise different likelihoods. Logistic classification maximises [1, p(ya|xn)

whereas the above procedure maximises

H P(xnlyn=1) H P(xnlyn=10)

nyp=1 n.yn=0

(ii) If the variances are not equal for the two classes then the boundary has two locations, not
one, and the probabilities are no longer given by the logistic function.

(iii) If the data are perfectly separable, then the logistic function for logistic classification
tends to a step function, whereas this is not the case for the above procedure.

END OF PAPER



