2010 PART IIA 3F6
SOFTWARE ENGINEERING AND DESIGN
DR T W DRUMMOND

ENGINEERING TRIPOS PART IIA

Day Date April 2010 9 to 10.30

Module 3F6

SOFTWARE ENGINEERING AND DESIGN {

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question s

indicated in the right margin.

There are no attachments.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator

1 (a) Why are data hiding and encapsulation benefits of object-oriented design? [10%]

Data hiding keeps the implementation details of a class hidden from the rest
of the application. This makes it easier to maintain invariants and to change the
data representation should that be desired. Encapsulation adds functions to each

class so that they can be responsible for managing their own data.

(b) A high street shop operates according to the procedure shown in the box

below:

1. A Customer places an order for items at a purchase counter and pays for
them. The customer is given a reciept for the goods which contains their
order number and then waits for their items to be collected for them.

9. Ttems for the orders are collected by “pickers” in the back of the shop. Each
picker has a computer terminal which displays the description, shelf number
and bin number of an item for them to collect. They collect that item from the
shelves, scan it with the barcode scanner attached to their computer terminal
and then place the item on a conveyor belt. They are then given a new item

to collect.

3. The conveyor belt delivers the items to a distribution area in the front of the
shop. Staff there scan each item as it arrives with a barcode scanner. The
computer terminal attached to the scanner then displays the order number
that it belongs to and the number of a collection counter. The staff member
then takes the item to that collection counter.

4. When an order is complete, the customer is informed of this via a large display
screen that indicates which collection counter they should go to.

5. The customer goes to this collection counter and a member of staff scans their
receipt with a scanner. This brings up a list of goods on the display for that
collection point. Fach item is then scanned as it is handed over to the customer
who takes the items and leaves the store.

Using good design principles, draw a UML class diagram that shows the main

classes that will be needed for the software to run this system. [50%]

*
Queue |& >! Item [< > Order
+add_item() f)'i’s”
+process_item()

A

Conveyor_Queue Order_Complete_Queue
V1
Fetch_Queue DisplayScreen
\A! N Collection_Queue
Scanner |&:—{Picker

+scan(): Item

Collection_Point

number

-1

(c) Draw a collaboration diagram that shows the sequence of events when a

[40%)

customer purchases one item.

order : Order

1) add_item
2) fetch
. 3) scan
fetq : FetchQueue . p:Pi P s1:
et etchQueue 4) process_item Picker sl : Scanner
-
#) add_item
6) scan Pt s2 : Scanner

convq: ConveyorQueue —————]

7) process_item
8) add_item

collq : CollectionQueue

-¢ .
9 t
éo) add_item) process_item

13) process_item
ordq : OrderCompleteQueue 4—)-2-3—;&— collp : CollectionPoint lz—?ﬂb‘ s3 : Scanner

11) order_ready

d : DisplayScreen

2

(a) Describe the sequence of events that takes place when a remote call is

made using CORBA. [30%)]

1.

2.

A program makes a call on a local proxy

the proxy contacts the local ORB and passes the call arguments to it
the local ORB contacts the remote ORB and passes the call arguments
the remote ORB makes the call on the remote servant

the remote servant returns

the remote ORB sends the return value to the local ORB

the local ORB returns the value to the local proxy

the local proxy returns the value to the calling program

(b) Tt is desired to extend the functionality of some spreadsheet software by

allowing cells within spreadsheets to reference cells in other spreadsheets over a

network using CORBA.

To do this, each spreadsheet is given a name. A central server is set up and

each spreadsheet registers its name with that server. A cell within a spreadsheet

can then contain a special formula which identifies the name of a spreadsheet and

the row and column of a cell within that spreadsheet. When the formula is entered,

the central server is used to obtain a reference to the relevant spreadsheet and then,

whenever the formula is evaluated, a call is made to that spreadsheet to obtain the
current value of that cell. Give the CORBA IDL that will be needed to enable this.

130%]

module NetworkSpreadsheet {

interface spreadsheet {

float get_cell(in long row, in long col);

interface server {
void register (in spreadsheet s, in string name) ;

spreadsheet get_spreadsheet(in string name);

(c) Why might this approach generate a lot of network traffic? How could
the design be improved so as to reduce the amount of network traffic? Give any

CORBA IDL necessary for the new design. [40%)

This would cause a lot of traffic because the formula is typically updated much
more often than the value of the cell referenced. It would be much better for the

referenced spreadsheet to inform other spreadsheets when the cell is updated using

the observer pattern:

module NetworkSpreadsheet {
inteface CellObserver {

void notify (in float value);

interface spreadsheet {

void observe_cell(in long row, in long col, in CellObserver obs);

interface server {
void register (in spreadsheet s, in string name) ;

spreadsheet get_spreadsheet(in string name);

(TURN OVER

3 (a) What is meant by polymorphism in object-oriented design?

Polymorphism refers to the concept of virtual functions. A virtual function

allows the type of an object to be identified at run-time and the function appropriate

for that object to be called. For example a rectangle and an ellipse might both

be derived from Shape with a virtual draw function. When draw is called on a

shape, the type of shape is determined (rectangle or ellipse) and the appropriate

draw function for that shape is called. This allows the production of heterogeneous

containers containing both rectangles and ellipses.

(b) Figure 1 shows a UML class diagram for part of a computer game for

two players. The object diagram showing the state of a particular game is shown in

Figure 2. Draw a sequence diagram which shows what happens when the do_turn()

(10%]

function is called for player1. [40%)]
playerl : Player unitl : Unit unit2 : Unit player2 : Player unit3 : Unit
T T T T T
doturn o | | ! | |
do_turn) il | ! |
I in_range ! !
: get_position _ !
l
]
. -+ ----- I]
-7 --=--- l
1 |
1 |
do_attack | !
| I
| |
- - - - - |)
: do_turn >l]
| in_range |
I get_position !
I
|
! % -----
| - - - -~
1
-+ - == T I

(c) Why is the use of the type attribute in class Unit a bad idea? Draw a

class diagram for an improved design. You do not need to show how any functions

are implemented. [15%)
Typecodes are a bad design in general because polymorphism can produce the
same functionality more elegantly. In particular, code that uses type codes can be
harder to extend than code that uses polymorphism. A more elegant design would
be:
enemy
1 .

Player <1player unitss, Unit
+purchase_basic() -:ppe?rén:e: Image
+purchase_advanced() -type: 1n

P Y -speed: float
+do_turn() .
+in_range(pos:float, range:float) -range: float

= getpos: z EA -position: float
+do_turn()
+do_attack()
+get_position()
if(player->enemy->in_range(position, range){ 1?3
do_attack();
} else { I I
position = position + speed; Basic Advanced
}
+do_attack() +do_attack()

(d) Now suppose it is necessary to allow units to be upgraded from basic to

advanced during the game. How should the design be modified to allow this? Give

your answer as a class diagram. 10%]
. t
Unit <L ST Type
:isgz?rzgie: Inage +do_attack()
-speed: float
-range: float

-position: float I I

+do_turn() -
+do_attack() Basic Advanced

+get_position()

+do_attack() +do_attack()

if(player->enemy->in_range(position, range){
type->do_attack();

} else {
position = position + speed;

)

(e) Tt is now desired to support multiple teams. Each team has its own
basic and advanced units which take different actions when the do_attack() or
do_special _attack() functions are called. When the game begins the player
chooses a team and can then only create units belonging to that team. Draw a

class diagram showing the design needed to achieve this functionality. [25%)]

This is easiest done using the factory design pattern:

Team

+make_basic()
+make_advanced()

T

Teaml Team2
Type
+make_basic() yp +make_basic()
+make_advanced() +do attack() +make_advanced()
<<instantiates>> = A <<instantiates>
>{BasicTeam1 BasicTeam?2 [&<
+do_attack() +do_attack()
>{ AdvancedTeam1l AdvancedTeam?2 |&
+do_attack() +do_attack()

enemy
1

Player

- player units~ |

+purchase_basic()
+purchase_advanced()

+do_turn()

+in_range(pos:float, range:float)

|

(~1 *~

Unit

-type: int
-speed: float
-range: float
-position: float

for each u in units {

float p = u.get_position();

if((p >= pos-range) && (p <= pos+range)) {

}

return true;

return false;

+do_turn()
+do_attack()
+do_special_attack()
+get_position()

for each u in units {

if(player->enemy->in_range(position, range){

u—>do_turn(); if(typ ==1) {
} do_special_attack();
} else {
do_attack();
}
} else {
position = position + speed;
}
Fig. 1
enemy enemy
playerl: Player >>{ player2: Player
units units
\4 \4 V
unitl: Unit unit2: Unit unit3: Unit
type: 0 type: 1 type: O
speed: 2 speed: 1 speed: 2
range: 2 range: 3 range: 2
position: 10 position: 15 position: 11

Fig. 2

(TURN OVER

4 (a) What does the term thread-safe mean? [20%)]

A thread-safe function can be called from multiple threads concurrently with-
out interfering with its operation. In particular, this means that critical sections

must be protected by mutexes or semaphores.

(b) A multi-player online computer game in which players have bank accounts
that store funds which can be used to purchase in-game items or trade with each

other is implemented using the following class:

class Account {
public:
bool transfer_to(Account& ac_to, int amount) {

if(balance < amount){

return false; // insufficient funds

}

balance = balance - amount;
ac_to.balance = ac_to.balance + amount;

return true;

private:
int balance;

};

Why is the definition of transfer_to() not thread-safe? Give an example
of how this function might fail to operate as intended when called from multiple

threads concurrently. _ [20%)

The lines

balance = balance - amount;

ac_to.balance = ac_to.balance + amount;

are not threadsafe because balance may be altered in one thread between being
read and written to in another. For example if two transfers are being made from
the same account in two different threads, balance may be read in both threads
concurrently, the amount subtracted from that balance in each thread and then the

results written back one after the other, with the second result overwriting the first.

(c) Give a modified version of the Account class that uses Semaphores to

make the code thread-safe. Why might deadlocks be an issue? Suggest how they

might be avoided. [40%)

class Account {
public:
bool transfer_to(Account& ac_to, int amount) {
sem.enter();
if (balance < amount){
return false; // insufficient funds

}
ac_to.sem.enter();
balance = balance - amount;
ac_to.balance = ac_to.balance + amount;
ac_to.sem.leave();
sem.leave();

return true;

private:
Semaphore sem;

int balance;

+;

This can cause a deadlock if two transfers are taking place in opposite directions
simultaneously if each thread acquires the lock on its own sem and is waiting for the
lock on ac_to.sem. This could be avoided by numbering the accounts and obtaining

the locks on the two accounts in order. Thus:

class Account {
public:

bool transfer_to(Account&

ac_to, int amount) {

if (ac_num < ac_to.ac/num){

sem.enter();
ac_to.sem.enter();

} else {
ac_to.sem.enter();
sem.enter();

}

if (balance < amount)

sem.leave();

ac_to.sem.leave();

return false;

3

)

// insufficient funds

balance = balance - amount;

ac_to.balance = ac_to
sem.leave();
ac_to.sem.leave();

return true;

private:
Semaphore sem;
int balance;
int ac_num;

};

(d) If there is one account

belonging to the in-game bank), w

methods that might make this mor

If one account is heavily used

at a time, leaving many threads w.

would be to create multiple trading

.balance + amount;

e efficient.

that is heavily used (for example the account

hy might the code not run efficiently? Suggest

it’s lock will only allow one thread to access it
aiting to obtain the lock. One solution to this

accounts for the bank, so that these can be used

[20%)

independently in separate transactions.

END OF PAPER

