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1 (@ @ triangle: & , cross: n, circle: m [20%]
(i) h: Nat,n: KT, m: Nat [10%]
(iii) NaT: +115mV,KT: —15mV [15%]

(b) During prolonged hyperpolarisation, the h gate is more deinactivated
(while the m gate is more deactivated) than at resting membrane potential. When
hyperpolarisation is suddenly released, the m gate activates (to a level corresponding to
normal resting membrane potential), and the 4 gate inactivates. However, the m gate is
much faster than the A gate, so there is a time window when the m gate is already at its
resting activation, but the & gate is still deinactivated compared to rest. This results in a
larger Na™ conductance, and thus current, than normally produced at resting membrane
potential. This extra amount of Na™ current may be sufficient to initiate an action
potential through the usual membrane potential-Na™ current positive feedback loop. [40%]

(¢) For each of the following changes in the membrane properties of a neuron,
decide if it increases / decreases / does not affect the membrane time constant and the
membrane space constant (assuming that all other properties are unchanged):

(i) Increasing membrane resistance, Ry: membrane time constant is

increased, membrane space constant is increased.

(i) Increasing axial resistance, R,: membrane time constant is not atfected,

membrane space constant is decreased.

(i) Decreasing membrane capacitance, Cp,: membrane time constant is

decreased, membrane space constant is not affected .

[15%]
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2 @ (@ The pH of pure water is 7, which is the negative log of the
concentration of H ions in moles/litre. The equilibrium constant is defined
by Keq = [H'][OH|/[H,0]. The denominator is essentially unchanged at
55.6 (1 mole of water ia 18 g, 1 litre has therefore 1000/18=55.6 moles in
it), s0 Keq = 1077-1077/55.6 = 1.8- 1016, Alternatively, the equilibrium
constant can be defined with different units as Keq = [H][OH™] = 10~ 14,

(i) The dissociated fraction is 10_7/55.6 =1.8x 1078,

(b)) @ Denoting the organic radical by A~, the equilibrium constant
is Keq = [A7][H']/[AH]. For large concentrations (like the ones in this
question), the amount of H™ produced by the dissociation of the acid is
much larger than the amount due to the dissociation of water, and so the
latter reaction can be neglected. Denoting the nominal concentration of the
solution by ¢ and the concentration of dissociated molecules by x, we have
x%/(c—x) =K. Hence x = (—K + /K2 +4cK) /2. For ¢ = {1,0.1,0.01} the
concentrations of the dissociated molecules are x ~ {0.01,0.003,0.001}, and
hence the pHs are 1.93,2.44,2.95.

(i) Now the concentration of HT is fixed to 0.01, so 0.01x = (¢ — x)K, so
x=cK/(0.01 +K). Since K < 0.01, x and ¢ are proportional, and for all
three concentrations the dissociation fraction is about 1.4%.

© @ The equilibrium constant of the combined reaction is
[OH™][H"]/[H,0] x [AH]/[A7][HT] =1.8-10716/1.4.10~4=1.28-10"12.

(i1)  This is the reverse situation to part b). We now assume that the amount
of OH™ produced by the combined reaction is so large, that the removal of
OH™ by the reverse water reaction (part a) is negligible. Suppose x is the
concentration of OH™ and [AH], then, as before, x2/(1 —x) = 55.6 K =
7.15-10" 1, Therefore x = 8.45-107°, the — log of which is 5.07, so the pH
is 14 —5.07 = 8.93. The assumption that the solution was basic is therefore

verified.
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4

3 (a @) We consider a small volume element located in (r,0,x), with
dimensions along these directions dr, rd6 and dx. Since u only depends on 7,
shear forces are only in the x direction. Considering first force balance in the
x direction, we get:

p(r,x)(dr-rd®)— p(r,x+dx)(dr-rd6)—(r)(dx-rd8)+1(r+dr)(dx-(r+dr)d8) =0

This can be rewritten as:

op a(rr) B
—g(dx~dr-rd9)+ P (dx-dr-d6) =0
leading to:
_dp 19(r7)
ox + r or =0 M

Force balance along the radial direction provides the next equation:

p(r,x)(dx-rdO)—p(r+dr,x)(dx-(r+dr)d@)+ p(r,t) (dx-dr-2sin(d6/2)) =0

from the lateral sides

This can be rewritten as:

d
- (8pr) (dx-dr-d@)+ p(r,t)(dx-dr-d) =0
,
Using the product rule on the first term, we get after simplification:
dp
i 2
ar @

(i1) The equation 2 shows that p is only a function x. Since 7 is only a
function of r, the equation 1 implies additionally that 'il'ig is constant.
We can now integrate Equ 1 with respect to r, and get:
a(rt d rd
T T
In the absence of a pressure gradient, the shear stress must be null

+K/r

everywhere, and therefore the integration constant K is zero. Hence the result.

rdp

= 3ux ®)
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(b) We can now substitute equ. 3 in the Casson equation, isolate the velocity
gradient on one side, and take the square on both sides:

rdp

2
du rdp _ rdp
%*( ‘zz;—vfy> T 2o TP TAVOY Taux

Comparing with the expression proposed in the exam paper, we find that

For r < R, the fluid is below its yield stress and behaves as a solid; this is a plug
flow. If Rc > R, then r is always smaller than R., and no flow is possible. There is not
enough pressure drop to trigger a flow.

(¢) By direct integration of the differential equation (just a sum of power laws...),
we get:

1 dp

M(r)_ﬂd_ (———2\/_ r2 —|—Rcr>+K

We constant K can be determined by the boundary condition: no flow at r =R, i.e.

u(R) =0.

1 dp

K=——-—% ————\/RRZ RcR
2/,de(2 Sl C)

Hence,

1dp (RE—r* 4
= ——— — = 2 —r2
u(r) L ds ( 7 3 R; <R r >+RC(R ))

But this solution is only valid as long as r > R, where du/dr < 0. Note that in this

flow, dp/dx is negative, as the pressure has to decrease as we move along the pipe. Since
u is positive and maximum at the center of the pipe, du/dr is necessarily negative as well.

Where r < R, we have a plug flow, and u(r) = u(R.). By continuity of the velocity
profile, u(R.) can be calculated from the expression above. It is worth pointing that when
r tends to R, from above, or when 7 tends to 7y, du/dr tends to zero, so the velocity

profile is smooth.
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6

(d) Flow starts if the pressure drop is high enough to ensure that R, is smaller
than the tube radius. If L is the tube length, we have —i—i = %—g = %y. The condition
for the flow is then:

27y L, 27yL
R > yoorAp> yo:ApO

Using the values provided, we get Apgy = 7Pa.
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4 (a)  The variation of the amount of oxygen in any volume V corresponds to the
amount of oxygen consumed in that volume, plus the amount of oxygen that moved across
its surface S. This leads to the following equation:

Il = foss- o

Using Gauss theorem, we get:

[l o= [ o o

If we now take the limit of a small volume element 8V, we get:

%6V = V&SV — pdV

Since = —DVc¢, we finally obtain: % =DAc—p

We have kept here for generality the time derivative, although this was not required
in the question, and could have been set to zero from the beginning. In a stationary case,
we therefore get: DAc—p =0

(b) The boundary condition is the value of the concentration at the surface of the
tumor: ¢(R7) = co. We use cylindrical polar coordinates to study this problem. The math
databook provides the expression of the Laplacian.

In the steady state, the differential equation becomes:

dr 30 "' dar 3D P2
A second integration provides:
2
pr-  Kj
=2 _2ug
(r) 6D r 2
Because the concentration must be finite at »r =0, K; = 0. Since ¢(Rr) = cq,

R .
K> =cp— pé—DT. The full solution is therefore:
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c(r) = co— s (R}~ 1)

(¢) The tumor gets necrosed when the minimum of the concentration, at r = 0,
becomes negative. This occurs when:

P 2 | 6Dcy
—R7 > Ry >
6D T co Or K P

The numerical value is Ry > /0.1 cm ~ 3 mm.

(d) The total amount of oxygen consumed by the tumor per unit time is simply p

. . 47TR3
times the total volume, i.e. ——3—I£

(e) The flux of blood arriving through the vessel is au,. The flux of oxygen is
augcg. For the tumor to be properly oxygenated, we then also need:

4JTR3} p
3

3augc
4rp

< augcg or R?} <

Numerically, we obtain approximately Ry < 1.5 mm. In this model, the tumor size
is therefore limited by the incoming blow flow, and not the diffusion. In practice, both
values are of the same order of magnitude.

(f)  The previous results imply that, for a tumor to grow larger than a couple of
millimeter, it has to trigger the formation of a large number of new vessels. Based on
this simple model, it would need at least 5 to 10 new arterioles to reach the size at which
growth is limited by diffusion. Additionally, tumors usually become vascularised in their
volume, and not only surface so that they can grow up to several centimeters.

Tumors are in fact known to release chemicals that stimulate the vascularisation of
tissues. Compromising the efficiency of these signals can ensure that tumors do not grow

more than a couple of microns in diameter.

END OF PAPER
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