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1. Additive Algebraic Reconstruction Technique

(a) AART is an iterative reconstruction technique for computed tomography. The
slice to be calculated is divided into pixels and these are assigned initial values,
perhaps all zero.

For each point in each projection, look at the set of pixel values that contribute to the
point and calculate the error between the sum of the relevant pixels and the correct
projection value. Divide this error by the number of pixels involved and multiply by
the relaxation factor (usually < 1) to get a correction value. Subtract this correction
value from each of the pixels contributing to the projection value under consideration.

Iterate through the projections, gradually updating the values of the pixels. Given
sufficient appropriate projections, the pixel values will converge to the correct solu-
tion:

N
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where k is the iteration index (the terms are not raised to the power of k), ; is a
pixel element contributing to the projection value y, N is the number of x; and A is
the relaxation factor. When X is 1, each iteration corrects a line of pixels to match
the projection value under consideration directly. Smaller values of A perform only a
partial correction. Smaller \’s lead to slower convergence, but less risk of oscillation
in the solution. [25%)

(b) (i) For efficient convergence, it is generally best to change the direction of the
projections used as much as possible between each set of updates. So, if the first set
of updates are based on projections in a horizontal direction, the next ones should
be vertical rather than taking the projections at 45 degrees. [10%]
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(b) (ii) Add the values in the rows to give 10, 20, 20 and 10. Compare these values
with the row totals in Fig. 1 to give four errors:

8§—-10 = =2
19-20 = -1
24-20 = 4
11-10 =1

Divide these errors by the number of bars in each row to give row update values of
—1, —1/4,1 and 1/2. Thus subtract 1 from all the top row, subtract 1/4 from all the
second row, add 1 to all the third row and add 1/4 to all the bottom row. Continue
as shown below, doing the columns next and then the diagonals.

Assessor’s remarks: This question tested the candidates’ understanding of the
Additive Algebraic Reconstruction Technique. The first part of the question asked for
a description of the algorithm and the second part of the question required candidates
to demonstrate its operation on a simple two-dimensional example. Most candidates
understood principles behind the technique and could begin to illustrate its operation.
Surprisingly, slightly fewer students were able to quote the update equation and
described the full operation of the algorithm correctly for the first part of the question.

. Radon Transform and MRI Spin Echo Sequence
(a) We wish to calculate the radon transform, R[] of the two-dimensional function

f(mjy):{ 1 if /22 + 942 < 4,

0 otherwise.
P
/6)

There are two cases.
Case 1: s >4 = R[f(z,y)] =0
]=2

Case 2: s <4 = R[f(z,y) V16 — §2

[65%]



The radon transform is independent of 6.

(b)

T, is the ‘longitudinal’ or ‘spin-lattice’ relaxation time. It governs the recovery of
the net magnetisation vector in the z direction. Spins change from the higher
energy, pointing against the applied magnetic field, to the lower energy, i.e.
aligned. Energy is dissipated from the spin system into the atomic and molecular
environment — the lattice. Generally, material with a higher proportion of free
water has a longer 7.

T, is the ‘transverse’ or ‘spin-spin’ relaxation. It governs the decay of the net
transverse (z—y) magnetisation to zero. Individual spinning protons generate
tiny magnetic fields that affect the spin speeds of their neighbours. This causes
the net z—y magnetisation vector to de-phase and reduce. Water bound to the
surface of large molecules has a shorter T, than free water.

PD is the density of detectable protons (Hydrogen atoms) in the material. This
affects the magnitude of the magnetic resonance signal.

(b)(i) In free induction decay, the output signal de-phases rapidly in the lateral (z—y),
direction because of (a) small scale effects from the gradient coils, (b) imperfections
in the main magnet and (c) the magnetic susceptibility of the patient. This is called
T and it is generally of the order of a few milli-seconds which is considerably faster
than T». The signal we are trying to measure therefore dies away quickly before we
can measure it.

(b)(ii)

Net magnetisation

RF input signal in the x—y plane
: after the /2 pulse
/2 pulse T pulse
I Inhomogeneities in the
time magnetic field cause
‘ rapid T,* dephasing
. ; which reduces the
Output signal signal.
T, decay

The 7 pulse flips all the
spins over, the slow ones
are now in front and the
fast ones are at the back.

[
T,de

; The spins come _&
cay : back into phase, =
‘ this forms the echo. %
Free induction Echo
decay
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The spin echo sequence involves two excitations. First a /2 radio-frequency pulse is
used to initiate free induction decay. Once the spin vectors have dephased, a 7 pulse
is applied to change their directions. The faster vectors will now be at the back of
the pack and the slow ones will be at the front. The vectors will therefore come back
into phase and produce an “echo” signal from which 75 can be measured.

(b))
RF input signal /2 pulse
/2 pulse npulse . for the i
- . i nextcycle
| trme
Output signal
T, decay

Ty weighted image: A long repetition time, TR (1000-2000 ms) is used, plus a rel-
atively long time to echo, TE (90-140 ms). The long repetition time enables all
the spins to return to close to their equilibrium position before the next spin-echo
sequence begins. The relatively long TE enables the measurement of 75. Water and
CSF appear brighter than fat.

Assessor’s remarks: This question tested the candidates understanding of some
of the basic principles behind magnetic resonance imaging. It was less popular than
question 1, but answered well by most of the candidates that attempted it. There
were several very good descriptions of T1, T2 and PD, but fewer candidates were
able to describe how to configure for a T2-weighted image. When describing the
Spin-Echo Sequence, most candidates confused the ”time to echo” (TE) with the
time between 7/2 and 7 pulses.

. Interpolation of scalar data

(a) Nearest Neighbour interpolation is very fast, since it simply consists of setting
each value to that of the nearest data sample. It also makes no assumptions about
the underlying data, and does not generate any new values, so in a sense is the most

120%]
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faithful to the sampled data. However, the interpolant is not even Cy continuous and
hence looks very blocky, particularly when viewing the data at a large magnification.

Tri-linear interpolation is also relatively fast, and generates a Cy continuous inter-
polant, which looks reasonably smooth even when using a large magnification, so long
as the original data was fairly well sampled. The interpolant degrades significantly
when the data is less well sampled, and this sort of interpolation can not be used
for calculating gradients in the data. It is particularly poor at interpolating diagonal
features in data sets.

B-spline approximation generates data which is C5 continuous and hence will look
very smooth to the eye even when using a large magnification. It can also be used
to produce good gradient estimates in all directions. However, since it is an approx-
imation rather than an interpolation, it is less faithful to the original data and will
in general return different values than the original data even at sample locations. It
also assumes that the underlying data is itself smooth, so may not be the appropriate
choice where this is not in fact the case. It is slower than tri-linear interpolation.

Radial Basis Function interpolation is capable of generating an interpolant with a
variety of continuities (dependent on the chosen basis) from completely unstructured
samples. However, it is far harder to implement, particularly on large data sets, since
it involves the inversion of a matrix of the same dimension as the number of data
samples. Although this matrix inversion can be performed very efficiently, this is not
a method suitable for real time data interpolation.

(b) (i) The Catmull-Rom spline is an interpolating spline with C continuity. Hence
there will be a wiggle in S which goes below 0 in the 2 < z < 3 segment and above
1 in the 4 < x < 5 segment. For the former case, the function is given by:

-1 3 -3 1][o0
1| 2 -5 4 —-1]|0 1
_ [43 42 - — (43 _ 42
S(t)y=1[t"t 751]2 1 0 1 ollo 2(t t%)
0 2 0 0]|1

This has a minima at t = %,

a maxima in the 4 < x < 5 segment of S =

in which case S = 5—72 By symmetry, there will also be
29
27

The B-spline is an approximating spline with the convex hull property. In this case
S clearly starts at 0 and ends at 1, and the convex hull property ensures it can not
go beyond the bounds of the data values, so these are the maxima and minima.

(ii) For the gradient, we consider the segment 3 < x < 4. In this case, the derivative
of the Catmull-Rom function is given by:

-1 3 -3 170
1| 2 -5 4 -1|]0 1
— 2 _ = 32 —
S(t) = [3t* 2t 1 0] s1-1 o0 1 o0 1 3"+ 3t + 3
0 2 0 0]]|1
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To get « = 3.5 we set ¢ = %, in which case the gradient is 2.

Similarly for the B-spline, we have:

-1 3 =317T[0
1f 3 -6 30]||0 1
— 2 — — 42 Z
S(t)y=[3t> 2t 1 0]6 3 0 30 1 t+ttg
1 4 10][1

To get x = 3.5 we once again set ¢t = %, in which case the gradient is —i-.
The gradient for linear interpolation is 1. [20%)

(iii) A sketch of the curves is given in the figure below. The solid line is the B-spline,
the dashed line is the Catmull-Rom spline, and the dotted line is linear interpolation.
The circles show the original samples.
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For completeness (this is not required in the question) the following is the gradient
of each interpolant:



1.4 T T T T T T T T T

(c) B-splines generate smoother data than Catmull-Rom splines, but do not interpo-
late values; Catmull-Rom splines interpolate values fairly smoothly, but can generate
over-shoots, as in the case above. Catmull-Rom splines will give sharper edges in
the data (higher gradients than linear interpolation) whereas B-splines tend to over-
smooth real edges in the data (lower gradients than linear interpolation).

Assessor’s remarks: This question investigated the use of various interpolating
and approximating functions on scalar data. Most candidates gave good answers
to the comparison in (a). Several candidates had difficulty finding the maxima and
minima for the two spline functions in (b)(i), though some correctly noted that the
convex hull property of B-splines made this part of the question potentially very
straight forward. Most candidates gave correct answers for the gradients in (b)(ii).
Many of the sketches in (b)(iii) were quite poor, neither exhibiting smoothness nor
sometimes even correct interpolation or approximation characteristics, though there
were exceptions. Only a few candidates mentioned the effect of the interpolant on
gradients in (c).

. Marching cubes and laser scanning

(a) Marching cubes creates a polygonal iso-surface at a specific threshold, in patches
based on eight data points at the vertices of a cube. Unfortunately, there are fre-
quently two different ways to construct a polygonal surface which divides vertices on
either side of the chosen threshold.

[10%]



case7 case 10c

case 12 case 12¢ case 13 case 13c

The figure above shows the six possible pairs of alternate surface patches for different
combinations of vertices. Only one pair is needed to provide an example of the issue.
This causes two problems: firstly, the polygonal surface topology is ambiguous, and
may change if we swap the above / below threshold sense of the vertices.

left voxel right voxel? right voxel?

case 3 case 10 case 10c x

However, topological ambiguity is not the only issue. The figure above shows what
happens if the wrong cases are used next to each other: when all the triangulated
cubes are connected, a gap remains in the surface. [30%]

(b) Sources of error during laser scanning include:

Surface properties Laser scanning relies on a single, clear, reflection of the laser
off the surface. Surfaces which are highly specular, or translucent, or have
fine features (e.g. hairs) will give multiple or distorted laser reflections. It is

9



sometimes possible to make the surface more diffuse and simpler, for instance
by wearing tight fitting clothes or dousing the surface in white powder.

Camera pixel accuracy The depth resolution is determined by the pixel size in
the camera image — more pixels give better resolution. The resolution also
reduces with distance from the camera and laser, so scanning surfaces as close
as possible reduces this error.

Object movement It generally takes several minutes to scan most objects and the
object must remain stationary during that time. Obviously, the faster the scan,
the lower this error is likely to be. It is also better to rotate the laser scanner
rather than the object.

Obscured features In order to scan the surface, the laser light must reach it, and
the camera see the reflection. Complex surfaces therefore often contain regions
which cannot be scanned. It may be possible to chop up the object into several
parts to get around this. Otherwise, missing surface parts have to be approxi-
mated in the reconstruction stage.

Laser thickness The laser stripe has a finite thickness. When triangulating, we
look for the centre of the laser reflection in the camera image. If scanning sharp
corners, or changes in reflectance properties, only part of the laser stripe may be
reflected, and the apparent centre will not be correct, resulting in depth errors.
This is known as edge curl. A narrower laser beam will improve this or possible
greater camera angle will improve this.

10
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The figure above shows what happens as the laser passes over the surface patch. At

a distance in @ of £ away from the patch, the z coordinate is correct. As the laser

beam nearly covers the patch, the x estimate of the reflected light is wrong by % and
this causes an error in the z coordinate of —2-;;“. The other side of the patch, the

error has the same magnitude but opposite sign. The error varies linearly between
these values. The sketches for (i), (ii) and (iii) are also given above.

_t
2tan@”

(ii) The disadvantages of reducing t are that there is a limit to how thin the laser
beam can be and yet still provide enough intensity. Also, the thinner laser beam
causes a patch of surface to be completely missed in this case.

(i) The maximum error is

(i) The disadvantages of increasing € are that it becomes increasingly difficult to
mount the camera at such a large angle whilst still having a reasonable view volume
— the camera has to be increasingly distant from the laser source. Also, the larger
the angle, the more likely parts of the surface will occlude the reflection and the
camera won’t be able to see the laser light at all.

Assessor’s remarks: This question tested the candidates knowledge of constructing
surfaces using marching cubes and laser surface scanning. The bookwork in (a) and
(b) was answered well, with most candidates correctly identifying sources of error
in (b). The answers to the laser scanning problem in (c) were more mixed. Few
candidates noted that the depth error swapped sign at each side of the non-reflecting
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patch, and few noted that the error was linear in x, generally drawing a curved error
function instead. However, the impact of the changes in (c¢)(ii) and (c)(iii) was better
understood, and candidates gained marks in these sections so long as the change from
the error in (c)(i) was correct, even if the error graph in (c)(i) was itself not correct.

. Surface rendering

(a)

Local World View | 3Dscreen | 2D device
coordinates coordinates coordinates coordinates coordinates (pixels)
Compose scene E Cull polygons | Rasterization
Ob].e,Ct. > Define viewpoint » Define 3D view [— Clip to view —F> Hidden |S urface
definition | 1| pefine lightin i | volume { | volume | | remova
gning | : i | Shading

) | @ | @) | @ 5)

(b) The purpose of both hidden surface removal and back face culling is to suppress
parts of the scene that are not visible from the viewpoint. However, they operate at
different stages of the pipeline and on different graphics primitives. Back face culling
eliminates whole polygons that are facing away from the viewpoint. These will be
occluded only if they are part of a solid, opaque polyhedron. Hence, back face culling
should be enabled only for such polyhedra. Since back face culling happens quite
early in the pipeline, and eliminates whole polygons at a time, the computational
savings can be significant. In contrast, hidden surface removal happens at the end of
the pipeline, as part of the final rasterisation stage, and eliminates occluded pizels,
typically using a z-buffer algorithm.

(c) (i) This is most likely inappropriate use of back face culling. The parachute
appears to be modelled using four quadrilaterals, so it is important that both the
front and back faces are rendered. Enabling back face culling would produce precisely
the error in (b): the two missing panels are the two back facing ones.

(ii) Since the rest of the scene is correctly shaded, this is probably not a problem with
lighting. More likely, the surface normals of the lander have been defined the wrong
way round. All the lander’s polygons are facing away from the illumination and are
therefore shaded using the Phong ambient term only, producing the characteristic
flat silhouette. It is also possible that the material parameters for the cone have been
set incorrectly, such that only the ambient reflection coefficient is non-zero.

(iii) The lander being a solid polyhedron, a competent programmer would have en-
abled back face culling (for the lander itself, not the parachute). But it is important
to define the front and back faces correctly, by ordering the vertices of the polygons
anticlockwise when viewed from the front. The most likely cause of the error in (d)
is that the polygons making up the sides of the cone have been defined the wrong
way round, so back face culling has eliminated the front faces, not the back ones. It

12
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is also possible, though unikely, that the near and far clipping planes have been set
inappropriately far apart such that there is a loss in z-buffer resolution which causes
both sides of the cone to have the same z value.

(d) The image in (b) is a 2D texture that is
mapped onto a sphere to produce the render-
ing in (a). The texture would appear to have
been constructed by projecting the planetary
terrain onto a cylinder, and then unwrapping
the cylinder to produce a flat image, as illus-
trated on the right.

When rendering the sphere with 2D texture mapping, the programmer uses the same
projection to associate the planet’s polygon vertices (z;, ¥, 2;) with points (s, t) in the
texture image. Within each polygon, the graphics pipeline then applies perspective
interpolation to map each rasterised pixel to a point in the texture image.

Assessor’s remarks: This question tested the candidates knowledge of surface
rendering. The bookwork in parts (a) and (b) was answered very well. However, many
candidates failed to note the distinction between hidden surface removal operating
on pixels, and back face culling on polygons, or the different computational gains in
each case. The answers to the rendering problems in (c) were generally good, with
candidates offering several interesting explanations as to how these renderings errors
might have occurred. However, many candidates suggested incorrect placement of
clipping planes, which clearly could not be the case since the planet is rendered
correctly. Most candidates noted the use of texture mapping in (d), but few gave
sufficiently detailed explanations of the process.

. Shading algorithms

(a) I, is the intensity of the reflected light of colour A, where A € {r,g,b} for red,
green and blue.

I, depends on several terms. First, there is the ambient reflection term, cy/,k,, which
models indirect illumination of the surface. ¢y, where 0 < ¢y < 1, specifies the colour
of the surface. I, is the intensity of the general background illumination, and k, is
the surface’s ambient reflection coefficient. '

The next two terms in the model are calculated for a point light with intensity I,,.
First there is the diffuse reflection term, cykqL.IN, which models even reflection of
the light source in all directions. Diffuse reflection is greatest when the surface is
pointing directly towards the light source, and tails away to zero when the surface is
side-on to the light source. L is the unit vector from the surface point towards the
light source, N is the unit surface normal and k; is the surface’s diffuse reflection
coefficient (small for dark surfaces, high for bright surfaces).

Finally, there is the specular reflection term, k, (R.V)", which models directional
reflection of the light source along the unit mirror vector R. V is the unit vector

13
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from the surface point towards the viewer. The viewer only perceives the specular
highlight (or glint) when looking along the mirror direction, or at least close to it. ks
is the surface’s specular reflection coefficient (small for matte surfaces, high for shiny
surfaces), and n is the specular exponent that determines the tightness of the glint.
n is high for a tight highlight (eg. a perfect mirror) and small for a more blurred
highlight (eg. aluminium).

(b) Both Gouraud and Phong shading work with vertex normals, which are found by
averaging the normals of all polygons incident at a vertex. Gouraud shading proceeds
by calculating a colour at each vertex using the vertex normal and the Phong model.
Colours for interior pixels are found by bilinear interpolation. For efficiency, the
interpolation can be formulated using fast, incremental calculations.

Phong shading interpolates the normals instead of the intensities. This tends to
restore the original curvature of a surface, so that highlights can be reproduced accu-
rately. The disadvantage of Phong shading is its expense. Even though the normals
can be interpolated using incremental calculations, the interpolation considers the
three components independently, so the vector must be renormalised at each pixel.
Then, a separate intensity for each pixel is calculated using the Phong model.

Gouraud shading is comparatively fast, though it produces less photo-realistic ren-
derings. It is particularly poor with the specular component. If a highlight should
impinge on a polygon but not extend to its vertices, Gouraud shading will miss the
highlight.

N1
(c) Linearly interpolating between two unit vectors will always N2
yield a vector with magnitude less than one (see right). Using
these vectors in the Phong equations will produce pixels that
are too dark.

However, for small polygons with similar normals at the vertices, the error is likely
to be small and tolerable, at least when it comes to the diffuse Phong term. The
problem would be with the specular term, where vectors are raised to an exponent n.
It is perhaps easiest to appreciate this point by considering the Blinn approximation
(N.H)" instead of (R.V)". Suppose N has a magnitude of 0.95 and n is 20. Then
(N.H)" will be 0.358 (= 0.95%°) times what it should be.

(d) With a four-value rasteriser, we could interpolate depth z and the three elements
of N from vertices to pixels, but there would be no capacity for interpolating L and
V as well. This would still permit Phong shading, as long as the light source and
viewer were at infinity. If this were the case, L and V would be constant across the
scene and only N would need interpolating. The pixel shader program would receive
the interpolated elements of N, normalise them, then evaluate

I = cx(Ioka + LkgLN) + Lk, (N.H)"
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(i.e. the Phong model with Blinn’s approximation) to produce intensity values at
each pixel. Note that L and H are constants.

There are a variety of other possibilities, however, including partial calculation of
the diffuse and ambient terms at each vertex, and just using interpolated normals, or
even the angle between the reflection and view vector, to update the specular lighting
at each pixel.

Assessor’s remarks: This question looked at the Phong reflection model and
Gouraud and Phong shading. The bookwork in (a) was answered well. Most can-
didates could distinguish between each type of shading and gave good explanations
of the advantages and disadvantages of each. However few noted the cost of re-
normalising the normals in Phong shading, and hence failed to spot in (c) that
the unnormalised surface normal was the result of linearly interpolating between
normalised surface normals. The answers for (d) ranged from very poor to very
interesting, plausible techniques for approximating Phong shading.

Graham Treece & Richard Prager & Andrew Gee
April 2010
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