ENGINEERING TRIPOS PART IIA

4 May 2010  9.00 to 10.30

Module 3C5

DYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question
is indicated in the right margin.
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1. A thin wire is wound to form a five-coil helical spring of radius R and pitch L
as shown in Fig. 1(a). One full coil of mass m is cut from the spring as shown in
Fig. 1(b). The shape of the single coil is described by the parametric equations

x=Rcos@, y=Rsind, z=é’£ for-n< @ <=x.
Vs

(a) Find the inertia matrix of the single coil at its centre of mass G . You
may find it helpful to note that dm = (m/27)d6 .

(b)  For the case L = 2R show that the inertia matrix of a single coil is
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(©) Use the parallel axes theorem to find the inertia matrix for a five-coil

helical spring of mass 5m, length 10R and radius R.

(d Find the magnitude of the couple required to maintain the five-coil

spring spinning at steady angular velocity £2k .

(@ (b)
Fig. 1
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2. A gyropendulum comprises a rotor of mass m at the end of a light rigid shaft
OG oflength L as shown in Fig. 2. The centre of mass of the rotor is at G and the
axis of rotation is aligned with OG. The end of the shaft at O is fixed to a frictionless
spherical joint. The principal moments of inertia for the gyropendulum at O (not G)
are A, A, and C . The rotor spins with angular velocity @ and the angle between the
shaft and the upward verticalis & .

(a) For fast spin find the rate of steady precession for any angle 6.

(b) For @ < 772 find the rate of spin @ below which steady precession is
impossible. How does this relate to the stability of a spinning top?

(©) For 6 > 7/2 show that steady precession is always possible.

(d) For @ close to 7 and for very slow spin show that there are two
possible solutions for steady precession. Explain how these two solutions relate to

the small-amplitude frequency /g /L of a simple conical pendulum of length L .

Fig. 2
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3. A solid billiard ball of mass m and radius a is free to roll without slip on a
flat horizontal table. The table is rotating at a steady angular velocity (2 about a
vertical axis through O. In a particular steady-state motion the ball is moving with
speed V ona circle of radius R centred on O as shown in Fig. 3.

(@ Use a no-slip condition to show that the magnitude of the steady angular
velocity @ of the ball is (RQ-V)/a. Show on a diagram the direction of this
angular velocity.

()  On a free-body diagram of the ball show all forces and hence deduce the
steady couple acting on the ball.

(c)  Use gyroscope equations or otherwise to show that ¥ = ¢RQ and find
the value of the constant a.

Fig.3
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4. The two degree of freedom system shown in Fig. 4 consists of a body of mass
m, which moves in the horizontal direction, and a body of mass m, which moves
freely along an inclined surface of the first body. The second body is connected to a
spring of stiffness &, as shown in the figure, and a force P is applied to this body in the
direction of the inclined surface, which is at an angle 6 to the horizontal. The
horizontal displacement of the first body is labelled x;, and the sliding displacement

of the second body is labelled x, (when x, =0 the spring carries no force).

(a) By using Lagrange’s equation, derive the equations of motion of the
system, including the effects of gravity. Express these equations in matrix form and
confirm that the mass matrix is given by
my +my mycost
[40%]

m, cos my

(b) Calculate the natural frequencies and mode shapes associated with free
vibration of the system. [40%]

(©) Derive expressions for the generalised momenta associated with the
two generalised coordinates x; and x,. One of the generalised momenta is
conserved during free vibration: state which one, and explain this result in physical
terms. [20%]

Fig. 4
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5. (a) Explain how the effects of gravity can be included in Lagrange’s
equation in two ways: by including the gravitational potential energy, or by
employing appropriate generalised forces. Demonstrate the equivalence of these two
approaches for:

() a mass on a spring;
(i)  asimple pendulum.

(V) In the presence of damping the standard form of Lagrange’s equation
is modified to become

d| oT or oV oF
— = |~ + +—=0;

where F is known as Rayleigh’s dissipation function, and the other symbols have their

usual meaning. For a simple mass/spring/damper system, the dissipation function has
the form

F=

2

where A is the damper rate and x is the velocity of the mass. Show that the use of
the modified form of Lagrange’s equation leads to the correct equation of motion for
this system.

(©) The equation of motion of an N-degree-of-freedom linear system has
the form

Mg+Cq+Kq=Q

where M, C and K are respectively the mass, damping and stiffness matrices, q is the
vector of generalised coordinates, and Q is the vector of generalised forces.

(i) Write down expressions for the kinetic and potential energies of
the system, and show how in the absence of damping (C=0) the
standard form of Lagrange’s equation leads to the above equation of
motion.

(i) On the assumption that the matrix C is symmetric, deduce the
form of the dissipation function for this system.

(iii) Discuss whether it is possible to derive a dissipation function if C

is not symmetric.

END OF PAPER
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(©) Q=(5SmR*Q? / 7).
(a) ¢ =mgL/(Cw,).
(b) Stable for w? > (44mgL/C*)cosé .

(c) Always stable because cosé < 0.

CcoBi g

(d) For A~mlI? the two solutions are ¢ = R

(b) Q =maV?/R in the direction of the velocity V.

©)a=2/7.
@) m +m, m,cos@)\(X N 0 0 x) ( Pcost
mycos®  m, %) (0 k)x,) \P+rmgsing)’
1 . —m, cosd
(b) », =0, “1=( JQ a)§= (ml+m?)2 > Uy =| my+m,
0 my(m, +m, sin” @) )

© p, = (m, +m,)x +m,%,cos@ (conserved)

Dy = m,yX, +m,X, cos@ (not conserved)
(b) ME+Ax+Kx=Mg.
© @ 7'=(1/2)§'M4, V=(1/2)q'Kq.

(ii) F =(1/2)q"Cq, (iii) not possible.



