ENGINEERING TRIPOS  PART IIA

Monday 3 May 2010 2.30 to 4.00

Module 3C7
MECHANICS OF SOLIDS

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Attachment: 3C7 formulae sheet (2 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 It has been suggested that stresses derived from the Airy Stress Function
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may be suitable to describe the stresses within the simply-supported beam shown in Fig. 1.
The beam is of length [ between supports, and depth d, and carries a uniform pressure w

on its top face.

(a) Calculate the stresses within the beam defined by ¢, and show that they satisfy
the boundary conditions on the top and bottom faces. [40%]

(b) Show that the stresses satisfy boundary conditions for simple supports at
x = /2. Comment on the suitability of this solution for the particular supports shown
in Fig. 1. [40%]

(c) How would you modify ¢ if the beam was also carrying a uniform tension
along its length? [20%)

Lox Id

Fig. 1
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2 (a) Derive the differential equilibrium equation relating the hoop stresses Ogg
and the radial stresses Oy, in a disk spinning at rotational speed ®. [20%]

(b) A flywheel is to be made from a lead alloy with density p = 10 x 103kgm 3,

Poisson’s ratio v = 0.3, and uniaxial yield stress ¥ = 12 x 10°Nm™2. It is assumed that
the material will yield according to the Tresca yield criterion. Two designs are considered:
each has a thickness of 10mm and a diameter of 200 mm, but one is a continuous disk,
while the other contains a central hole of diameter 20 mm.

(i)  For each disk, find the rotational speed at which yield will first occur. [60%]

(i) By considering the central hole as a stress concentrator, comment on
the relative size of the stresses towards the centre of the two disks at a given
rotational speed. [20%]
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3 (a) Determine the stress state in polar coordinates (r,6) from the Airy stress

function

¢ =Cr0Osin0. [20%]

(b)  Show that the stresses found in (a) give the elastic solution for a half-space
loaded by a line-load P, as shown in Fig. 2(a), and find the magnitude of the constant C.  [30%]

(c) Show that the stress components O, and Ggg are constant around a circle of
diameter D centered at a distance D/2 below the point of loading. [20%]

(d) By superposition, find the stress component Oxx at the centre of a cylinder
of diameter D loaded by compressive loads at opposite ends of a diameter, as shown in
Fig. 2(b) (30%]

(a) (b)

Fig. 2
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4 Inaplane strain backward extrusion process a billet of half-width 3a is compressed
by a smooth, rigid punch of half-width 2a driven at speed v as shown in Fig. 3. The
material of the billet can be considered to be rigid-perfectly plastic with a flow stress in
shear of magnitude k. All the interfaces between the tooling and the deforming material
are well lubricated. Velocity discontinuities for a possible Upper Bound analysis are
indicated.

(a) Show that a reasonable estimate of the required punch pressure p in terms of
k and the value of the ratio x/a is given by the minimum of the expression

2
2k <z+ —) , where z= i
Z a

(b) Explain why the equation in part (a) would not be appropriate for those
situations in which the plastic zone extends over the distance y to the back face of the

die. Derive an alternative equation for this case.

() At what position of the punch does your analysis in part (b) begin to provide
a more attractive estimate of the extrusion pressure than the original estimate given in
part (a)?
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END OF PAPER
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Engineering Tripos Part ITA

Equilibrium

Module 3C7: Mechanics of Solids
ELASTICITY and PLASTICITY FORMULAE
1. Axi-symmetric deformation : discs, tubes and spheres
Discs and tubes Spheres
d(roy)
080 = d—rrr + paﬁﬂ =2 dr
B 3+v B

Lamé’s equations (in elasticity)

O'rr=A—r_2—

2. Plane stress and plane strain

Strains

Compatibility

or (in elasticity)

Equilibrium

V4¢ = 0 (in elasticity)
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3. Torsion of prismatic bars

Prandtl stress function: oy (= 17) = _c_l_lg_ Oy (1) = - dy.

dy dx
Equilibrium: T =2ydd
A

Governing equation for elastic torsion: ~ V?y =-2GB  where S is the angle of twist per unit length.

4. Total potential energy of a body

[M=U-w

where U = % j e'Dledv , W=PTyu  and [D] is the elastic stiffness matrix.
14

5.  Principal stresses and stress invariants

Values of the principal stresses, op, can be obtained from the equation

Oxx — Op Oxy Oxz
Oxy Oy~ 0P Oy =0
Oxz Oyz Ozz — Op

This is equivalent to a cubic equation whose roots are the values of the 3 principal stresses, i.e. the possible values of op.
Expanding: op® — Ij op? + Ihop — I3 = 0 where I} = oxx + Oyy + Oz,

Oxx Oxy Oxz

Oyy Oyz Oxx Oxz Oxx Oxy

I, = and Iz = Oxy Oyy Oyz

Oyz Ozz Oxz Ozz Oxy Oyy

Oxz Oyz Ozz
6. Equivalent stress and strain

- 1
Equivalent stress o = \/% {(o1 - )2 + (oy - 3)? + (03— 01)2 } 12

- 2
Equivalent strain increment dg =\/‘; {dei? + dep? + des? } 12

7. Yield criteria and flow rules

Tresca
Material yields when maximum value of |61 — o2, |op — o3| or |o3- 01| = ¥ = 2k, and then,

if o3 is the intermediate stress, dej:dey:des = A(1:-1:0) where 4 # 0.

von Mises

Material yields when, (o1 - 02)2 + (02— 03)2 + (03— 01)? = 2Y? = 6k?, and then

deg dey des dey —dey _ dey - des _ dez —deg _ 2=
d  dy  d3  o-oy  o,-o03  o3-o1
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3C7 2010: Answers

w

1.(a) 04 = 0

[6d2y — 151%y + 6022y — 40y3];
Oyy = %5 [~—d3 — 3yd* + 4y3];
Tay = 575 [—12:1;3/2 + 3zd’]

2.(b.i) 539rads™!; 381rads™

2C
3.(a) o, = — cosB; gg9 = 0; 09 =0
r

2P

(d) Ozz = ;;5

4.(b) One mechanism gives p = 2k (% + %)

(c) z=+2+1



