ENGINEERING TRIPOS  PART IIA

Thursday 6 May 2010 2.30to 4

Module 3D7

FINITE ELEMENT METHODS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Attachment: 3D7 Data Sheet (3 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 Consider on the interval running from x = 0 to x = L the problem governed by the

du d du
%a—a<ﬁa>—f

where o and f are positive constants, and with the boundary conditions

differential equation

u=0 at x=0
du
dx

=h at x=1L

B

(a) Show that a weak version of this problem involves finding u such that

L du L dvdu L
ov—d ——dx= d Al — 1
| e xs [T = [ vfdr vl ()
holds for almost all test functions v, and state the restrictions on v. [25%]

(b) For a linear element of length /, compute the element stiffness matrix k. for
the formulation in Equation (1). [50%]

(c) Formulate an alternative version of the weak form to that in Equation (1)
which would still be suitable for finite element analysis. [25%]
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2 Figure 1(a) shows a triangular domain made of two isotropic materials with heat
conductivities k| = 3 and kp = 6. The heat flux on the edge AC is prescribed to be g = 10
and the edge CB is insulated. A constant temperature 7 = 10 is prescribed on edge AB.
The domain is discretized with two three-noded triangular elements as shown in Fig. 1(b).

(a) Compute the global source vector f. [25%]
(b) Compute the global conductance matrix K. [40%]

(c) Compute the temperature at the four finite element nodes and determine the
corresponding heat flux across the domain edge CB. Briefly comment on the computed
energy flux across the domain edge CB and suggest how its accuracy could be improved.  [35%]
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3 (a) Figure 2(a) shows a four-noded elastic element with the following

displacement vector

T T
aez[uxl Uyl Uy Uy W3l g uyd =[1 0 1010 —1 o}

(i)  Compute the strain components &y and &xy along the top edge between
nodes 3 and 4. [50%]

(ii) If the given displacements are due to an element force vector
T
fe:[l 0 -1 010 —1 o]
comment if the strains found in (i) are physically meaningful. [20%]
(b) Consider the eight-noded hexahedral three-dimensional element shown in
Fig. 2(b).
(i)  Give an analytical expression for the shape function of node 1. [20%]

(ii)  Suggest an integration rule for the numerical integration of the stiffness

matrix using Gauss integration. Give reasons for your answer. [10%]
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4 (a) A particular semi-discrete finite element elastodynamics problem is in semi-
discrete form written as
Ma+Ka=b>b 2)

Using the time stepping method

Tl (1-0)yn+0¥n41
At
where 6 is a constantand 0 < 6 < 1:

(i) re-formulate equation (2) into a fully discrete problem such that it can
be solved; [60%]

(ii) under what conditions can solving a system of equations be avoided for
this problem? [10%]

(b) For a system of equations of the form Ma + Ka = b, the critical time step
for a conditionally-stable time-stepping scheme is typically proportional to the square of
a measure of the element size. For meshes with uniform element size, if the number of
elements is doubled, estimate the change in the critical time step for a cne-dimensicnal

problem, a two-dimensional problem and a three-dimensional problem. [20%]

(c) Explain why the modal analysis approach is not applicable to non-linear time-
dependent problems? [10%]

END OF PAPER
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3D7 DATA SHEET

Element relationships

Elasticity
Displacement u=Na,
Strain € = Ba,
Stress (2D/3D) o =De
Element stiffness matrix k., = fVe BT'DBav
Element force vector fe= fVe NTfav
(body force only)

Heat conduction

Temperature T =Na,
Temperature gradient VT = Ba,
Heat flux q=—-DVT

Element conductance matrix k. = fVe BTDBdvV

Beam bending
Displacement v=Na,

Curvature K = Ba,
Element stiffness matrix k. = [y, BTEIBav

Elasticity matrices

2D plane strain

l—-v v 0
— E v 1-v 0
(T+v)(1—-2v) o Lm2v
2
2D plane stress

1 v 0
Z_ET v 1 0
l—v 1—v

Heat conductivity matrix (2D, isotropic)

<o



Shape functions

3
(x3;)’3)
Ny = ((xpy3 —x3y2) + (y2 —¥3)x+ (x3 —x2) y) /2A
y Ny = ((x3y1 —x1y3) + (y3 —y1) x+ (x1 —x3)y) /2A
2
T oy V3= (2 —xy1) + (0 —y2)x+ (= x1)y) /24
- - A = area of triangle
LN
Xp Y1
n
3 (0.1
Ny=1-&-n
Ny=§
N3=n
2 3
1 ———

N =2(1-¢-m)*—(1-&-n)
Ny =282~
N3 =2n%—n
Ny=45(1-8—-1)

- =4né&
Ne=4n(1-5~n)

(1=&)(1—-m)/4
(1+6)(1—=n)/4
(1+&)(1+mn)/4
(1=8)(1+n)/4
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— (x—x2)? (=1 +2(x1 —x))

X »
! 2 (x —x1) (x— %)
° ° My = 5
X] l x2 l
- > 2
_ =x) (420 —x))
Ny = 3
Hermitian element )
YR ot Yl Gt )
2= 2
Gauss integration in one dimension on the domain (—1,1) Using n Gauss

integration points, a polynomial of degree 2n — 1 is integrated exactly.
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The list of numerical answers for 3D7

1b)

2a)

2b)

2¢)

3a)

4b) 1D: Reduction factor 4
2D: Reduction factor 2
3D: Reduction factor 1.59

a, B a B
27T 277
k. =
a B a B
377 277
ff=[-10 0 —10 —20]
K= 9 9
4 4
__9_ _1_3_|_E 2
7 4 (4T 4
Ty —8.44
Ty —4
Gn = 1.7285
6 —1
Trr — 5
1
€xp = ==
80

).



