ENGINEERING TRIPOS PART IIA

Wednesday 5 May 2010 2.30 to 4

Module 3F2
SYSTEMS AND CONTROL
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

There are no attachments.
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1 Figure 1 shows a bake-plate used for the heat-treatment of silicon wafers. It is
divided into 3 segments. When a wafer is placed on the bake-plate, the temperature
in contact with each segment is assumed to be uniform over the whole segment. The
difference between the temperature of the i°th segment and the ambient air temperature is
denoted by 6; (i = 1,2,3). Each segment has its own heater; power p; is supplied to the
heater of the ith segment, and can be varied.

Defining x = [6;,6,,63)7 and u = [p;,p2, p3)7, the wafer temperatures evolve

according to

x = Ax-+ Bu
where
—4 2 0 500
A= 2 -6 2 and B=]0 2 O
0 2 -4 0 0 2

(a) Show that this system is open-loop stable.

(b) What heater powers should be applied, in steady state, to hold the wafer
temperature at 25°C above ambient in each segment?

(c) For a general square matrix 4, show that if v is an eigenvector of 4, then it is

also an eigenvector of e/,

(d) Verify thatv=1,1,1] T is an eigenvector of 4 for the wafer. Deduce that, if
the wafer initially has a uniform temperature, then its temperature will remain uniform if
u = 0, and give an expression for the evolution of this temperature with time.

(¢) Suppose that state feedback of the form u = —Kx is applied. Show that, if K
is chosen such that BK = cI, where ¢ is some constant, then the wafer temperature will
remain uniform under closed-loop control, if the wafer temperature is initially uniform.
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2 Two chemical processes which are to be controlled have the transfer functions

s+4
(s+2)4

and Gy(s) =

respectively. Feedback controllers using proportional control only are to be used for both

of them, as shown in Figure 2.

(a) Draw the root-locus diagram for G (s), and show that it consists of straight-

line segments only.

(b) Find the value k; of proportional gain required to obtain one pair of closed-
loop poles with damping factor 1/+/2, with the transfer function Gy (s).

(c) Sketch the root-locus diagram for G (s).

(d) (i) Ifa stable feedback loop has return-ratio L(s), explain why the steady-
state error in response to a unit step demand signal is approximately 1/L(0)
in most practical cases.

(i) Show that if the gain k; is used with transfer function Gy (s) then this
approximation cannot be used, and find the steady-state error in this case.
Comment briefly on the quality of the feedback design in this case.

= Q—-{i-{a -
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3 The linearised equations for the pitch angle 6 of an underwater vehicle are given by

lea
0

where & is the deflection of the stern plane, a;y, aj; and b; are non-zero constants, and
the state vector is x = [, 6]7.

X+

a
o | A e
1 0

(a) Show that this system is controllable.

(b) The pitch angle is to be controlled to 6 = 0. Design a state-feedback system
which will place the closed-loop poles at —1.

(c) In practice the equilibrium pitch angle with 6 = 0 may not be 6 = 0, because
of a shift in the centre of gravity, imbalances of hydrodynamic forces, etc. Explain
how integral action can be introduced into a state-feedback control scheme, and why

it overcomes this problem.
(d) Design a state-feedback scheme for the underwater vehicle, incorporating

integral action, which will place the closed-loop poles at —1, if aj; = -2, aj2 = 0.5
and by = 1.
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4 A linear system is defined by the equations
X = Ax+ Bu, y=Cx (1)
where x, u,y are the state, input and output vectors, respectively.

(a) What is meant by the system being observable? How can one test whether a

linear system is observable? [20%]

(b) Ifu(¢) =0 for all #, and the initial state is x(0) = x¢, show that

|| e =g Wox,
where W, is the observability Gramian defined as
o T
W, = /0 AT e dr

(assuming that the system is asymptotically stable). [20%]

(c) The following equation arises in the study of some molecular structures:

6 =—£0—-0+V2eu
where u is a disturbance signal. Only 6 is measured. Put this into the standard form (1),
and check that the resulting system is observable for all values of €. [20%]

(d) (i)  Show that the observability Gramian can be obtained as the solution to

the matrix equation
ATWy+Wod = —CTC

(Hint: Consider < [eAT’cTceA’] ) [30%]

(ii) Solve this equation to find W, for the system you obtained in part (c).

(Note that ¥, is symmetric.) [10%]
END OF PAPER
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. (b): w=1[10,25,25]".  (d): z(t) = e"**Gov, where 0o is the initial temperature.

. (b): ky =4. (d)(ii): Steady-state error = %7‘0 if ro is the amplitude of a step reference signal.

-®XK=F%%%#} ): K =[1,3.5,—1].

(d)(i): W, = & [ e H



