ENGINEERING TRIPOS  PART IIA

Thurs. 6 May, 2010  9.00 to 10.30

Module 3F3

SIGNAL AND PATTERN PROCESSING
Answer not more than three questions.

All questions carry the same number of marks.

The approximate number of marks allocated to each part of a question is indicated

in the right margin.

There are no attachments.
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1 (a) Define the power spectrum for a discrete time random process and give an
interpretation for the power spectrum in terms of signal power. Detail any conditions that
should be satisfied for a random process to have a power spectrum.

(b) If two wide-sense stationary random processes {A,} and {B,} are
independent, show that the power spectrum of their product X,, = A, B, can be expressed
as a convolution:
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where S, and Sp are the power spectral densities for the two independent processes.

(¢) A music synthesiser generates a sound by random amplitude modulation of a
tone as follows:

X = (14 An) cos(nayT +¢)

where A, is a zero mean, wide-sense stationary random process and @y is a constant
frequency.

Determine whether the process {X, } is wide-sense stationary when:
@B ¢=0

(ii) ¢ is a random variable, independent of {A,} and uniformly distributed
between —m and +7

(d) Describe and sketch the power spectrum of the process {X, } with phase as in
part (c)(ii) when

(i) A, =cos(nwT/10+ 6), and O is a random variable, independent of ¢,
and uniformly distributed between —7 and +7.

(i) {An} is a second order autoregressive process having poles at
0.9exp(LiwyT/10).

[You may use the result that the DTFT of cos(wgnT ) is 0.578(w — @) for values
of @ between 0 and 7/T.]
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2 (@)  The Discrete Fourier Transform (DFT) is typically implemented using a Fast
Fourier Transform (FFT) algorithm. Assuming that the number of data points A is even,
split the summation in the basic DFT equation into two parts: one for even n and one for
odd n, and then show that the DFT values Xpand X, v /2 may be expressed as

Derive Ap, B, and W in the above expression, and thus define the FFT “butterfly”
structure.

(b) If N is a power of 2 the process above can be repeated several times resulting
in a radix-2 FFT algorithm. Determine the number of such stages required, the number
of “butterfly” computations per stage and the total number of complex multiplications if
N =64.

(¢) A wide sense stationary discrete time random process {X,} has

autocorrelation function
1, [=0

rax[l] = 0.5, =+l

0, otherwise

The process is filtered through a first order noisy channel to give:
yn - Xn - O.2.xn_] + Vn

where vy, is white noise having variance 0.4.

(i)  Determine the autocorrelation function of the noisy filtered process
{¥»} and the cross-correlation function between {X,} and {V,,}.

(ii) Determine the coefficients of a second order Wiener filter for extraction
of {X,} from measurements {¥,}. Compare its expected mean-squared error
with the expected mean-squared error between {Y»} and {X,}.
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3 (a) Describe the direct form I structure for implementation of infinite impulse
response (IIR) filters. Explain why implementing a digital filter in direct form I is
satisfactory in Matlab where double precision floating-point is used but is not usually a
good idea in fixed point implementation. What are other alternative realization structures
of IIR filters and their potential advantages? Describe the direct form II structure and
explain why it may be preferable to the direct form I implementation.

(b)  The Goertzel algorithm is often used for detection and measurement of single
sinusoidal tones since it computes a single Discrete Fourier Transform (DFT) component.
The Goertzel algorithm is implemented as a second-order IIR filter with two real feedback
coefficients and a single complex feedforward coefficient. The transfer function of the
Goertzel filter is

14bz7!
H(z) =
@) 1+ajz71+2772
where the filter coefficients for the mth bin of an N-point DFT are
2r
by = —exp <~—j—ﬁm> ay = —2cos(2nwm/N)

The filter is to be implemented in direct form II. Determine the coefficients of the filter
for m = 15 and N = 64 and sketch the implementation.

(c)  Show that the Goertzel filter in part (b) is equivalent to a first order complex

27
all-pole filter having a single pole at z = ¢™/'N"™. Hence show that, assuming the input
signal is zero prior to n = 0, the Goertzel algorithm delivers the expected DFT coefficient

(up to a simple complex scale factor) after N data points have been passed through the
filter.
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4 Consider a binary classification problem with scalar real-valued observations x, and
class labels y € {0, 1}. Assume that p(x|y = 0) is a Gaussian distribution with mean 0
and variance 2, and p(x|y = 1) is a Gaussian distribution with mean 1 and variance 2.
Furthermore, assume that p(y = 0) = p(y =1) = 1/2.

(@)  Compute the probability that given an observation x = 2, its corresponding
class label is y = 1.

(b) Derive the general expression for p(y = 0|x) as a function of x, and discuss
how this relates to logistic classification.

(¢c)  Now assume that you fit a maximum likelihood Gaussian distribution plxly =
0) with mean g and variance Gg to the observed data with label y = 0, and similarly you
fit a separate maximum likelihood Gaussian distribution p(x|y = 1) with mean y; and
variance 612 to the observed data with label y = 1.

Describe several ways in which the above procedure differs from maximum
likelihood logistic classification, paying particular attention to the role of the variances
and likelihood that is being optimised.

END OF PAPER
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