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1.

(a) Taking the state vector to be & = [Py, Pe,, Fey, .+ .y Peys, E)7, the state- space equation corresponding

(b)

(¢)

to the given equations is:

[ }-)g T [ cg/74 0 0 0 —k/7g 1 P, [ 1/7y ]
P, 0 c¢fre 0 - 0 0 P, -1/
B, 0 0 c/7e -+ O 0 P, —1/7.
N : : C : : S : p M)
B, 0 0 0 - ef7e 0 P, —1/7
| E i | 1 -1 e L -1 0 J1L E ] L 0

Equilibrium is defined by P, = P,, = £ = 0. From equation (2) in the question this requires
for each . From equation (3) it then follows that, at equilibrium, | P, = Mp/c, I Finally,
from equation (1) we must have E = (p — ¢gP,)/k, namely l E=p(1— Mcg/cc)/k )

In the case M =1 the state-space equation becomes
Ifq e/t O —k/7q Py 1/7,
P, | = 0 cfre O Pe | +| —1/7c |p (2)
E 1 -1 0 E 0

Stability of this system depends on the eigenvalues of the square 3 x 3 matrix. To simplify notation,

write this matrix as
a 0 -b
A=[0 ¢ O (3)
1 -1 0

where a = ¢y /79, b = k/74 and ¢ = ¢./7c, and we know from the question that a > 0, b > 0 and
¢ > 0. Then the characteristic polynomial of A is

A—a 0 b

det(M — 4) = 0 A-c 0 (4)
-1 1 A

= A—a)MA—¢)]+b0+Xr—c) (5)

= (A—c)(A2 —aA+b) (6)

Thus one eigenvalue is at ¢ > 0, and hence the system is unstable. (In fact the other two eigenvalues
are also in the right half-plane, as can be deduced from the pattern of signs of the coefficients in the
quadratic factor.)

Alternative: You could multiply out the cubic polyomial and apply the Routh- Hurwitz test. But that
8 unnecessary work.



(d) We now have

P,
P=[—0‘0”‘ﬁ][Pc1il (7)
E

hence we have

Py [ co/rg O —k/7g ] [ 17, Py
P., = 0 ¢/ 0 +| Y |[-a 0 —8] P, (8)
E | 1 -1 o | | o E
{ [ g/t 0  —k/ry ] [ —a/ry 0 —B/7g :| } [ Py }
= 0 Cc/‘l'c 0 + O'/Tc 0 ﬂ/Tc P, (9)
| 1 -1 0 | | 0 0 0 E
[ (g —a)/mq 0 ~(k + B) /74 :l [ Py jl
= a/t. ce/Te B/ P, (10)
1 -1 0 E
If @ = —k then the square matrix is ‘block-triangular’:
B (cg—a)/ry O 0 Py
P, |= o/T. Ce/Te B/Te Fe, (11)
| E 1 -1 0 E

and hence one of its eigenvalues is (¢; — &) /7y, while the other two are the eigenvalues of the bottom-
right 2 x 2 block:

[ CC_/IC ﬂ{)‘rc ]

The determinant of this block is 8/7, < 0, since 8 = —k < 0. But the determinant is the product of
the eigenvalues; hence the two eigenvalues must be of opposite signs, so one of them must be in the
right half-plane. Hence the system is unstable.

Alternative: Find the characteristic polynomial of the block: A\(A—cc/7c)+ /7. The coefficients are
not all of the same sign, so at least one of its roots must be in the right half-plane.

The transfer function of the car is G(s) = 1/(ms +.b). The appropriate block diagram is shown in
fig.1.

G(s) -

Figure 1: Block diagram of cruise control system in Q.2(a).

Write the PI controller ag K(s) = k(s + 1)/s, so the return-ratio is

L(s) = k(s+1) &k s+1 -0 s-4+1
" s(ms+b)  ms(s+L)  s(s+ L)

(12)

where ¢ = k/m. (The point here is to put the transfer into ‘monic’ form, which will help to get part
(d) correct.)

So there are poles at 0 and at —b/m = —1/20, and a zero at —1. The root-locus thus has 2 branches,
which start at the two poles; one of them terminates at —1, while the other one goes to co — it



(b)

must do so along the negative real axis (the angle between the asymptote and the positive real axis
is w/(2 — 1)). The root-locus is on the real axis for —1/20 < s < 0 and for 8 < —1 (to the left of an
odd number of poles and zeros). There must therefore be a breakaway point between the two poles,
and another one to the left of the zero.

A sketch of the root-locus diagram must therefore look something like fig.2. (The portion off the real
axis is in fact a circle, but that is not expected here. Also one could look ahead to part (b)(ii) of the
question to locate the breakaway points accurately, but again that is not important here.)

A

Figure 2: Sketch of root-locus diagram for Q.2(a) — not to scale!

i, Write the closed-loop characteristic equation 1+ L(s) = 0 as a polynomial equation d(s)+n(s) =
0, where L(s) = n(s)/d(s). At a breakaway point sp this equation has a repeated root, so it
must be possible to write ,

d(s) +n(s) = (s — s0)Pa(s) (13)

where ¢(s) is some polynomial and p > 2 (usually p = 2), or
(s — s0)Pq(s)

1+ L(s) = i) (14)
Differentiating this with respect to s gives
dL(s) _ [p(s — s0)"a(s) + (s — s0)°q'(s)]d(s) — (5 — s0)Pq(s)d'(s) (15)
ds d(s)?
and therefore dL(s)
s
s - =0 (16)
since (s — sg) is a factor of dL(s)/ds.
ii, From {a) we get
dL(s) s(s+&)-(s+1)(2s+2) an
N [s(s + &)1
—s2 _9g— L
245 (19)

[. .. ]2
so the breakaway points are roots of s2 4 25 + 0.05 = 0, But
(s +1.9747)(s + 0.0253) = s + 25 + 0.05 (20)

so the values given are verified to be breakaway points.



()

(d)

Placing both poles at —0.0253 would give both time constants values of 1/0.0253 = 40 sec, which is
clearly much slower than the specification. Placing both poles at —1.9747 would give time constants
of 1/1.9747 = 0.5 sec, which satisfies specification (ii). Since both poles are real and coincident, the
damping factor would be { = 1, which satisfies specification (i). Since a PI controller is used, the
steady-state error will be 0, which satisfies specification (iii).

From part (a), the closed-loop poles are the solutions of
s+1
1+L(s)=14+e———=0 21
But we want s = —1.9747 to be a solution (and we know from part (b) that it is for some positive

value of ¢). Therefore the required value of c is given by

_ | —1.9747 x | — 1.9747 4 0.05] _ 1.9747 x 1.9247 _
€= [—1.9747 + 1] =" ooy %Y (22)

But ¢ = k/m, hence the required value is | k = 3900 |

3. (a)

(b)

Given £ = Az + Bu and y = Cz + Du, Laplace transform the first equation to get sIX(s) —
z(0) = AX(s) + BU(s) where X(s) is the Laplace transform of z(t) etc. This gives (sI — A)X(s) =
BU(s) + z(0). Assume that x(0) = 0 (standard assumption when finding transfer functions), then
X(s) = (sI — A)~1BU(s). Now taking the Laplace transform of y gives

Y(s) = CX(s) + DU(s) = C(sI — A)"'BU(s) + DU(s) (23)

and hence the transfer function is

G(s)=C(sI-A'B+D (24)
i. We have
up = w=Chy and (25)
v = y=Ci71+ Duus + D12Cezs (26)
Hence
£1 = A121 + B12Cozs + Briug (27)
g = BaCiz1+ (A2 + By D13C3)z2 + BaDiyuy (28)
or, in standard form:
[ 2 ] - [ Bféﬁ Ay +Blli'220D212Cz ] [ :; } + [ 3123]:_1_)111 ]ul (29)
This gives A and B as required. From (26) we have
C = [ C1 D130y ] and D =Dy (30)
il. A system with realisation (A, B, C, D) is controllable if and only if the controllability matrix
P=[B AB .- A"'B] (31)

has rank n, where n is the state dimension.
With the given data we have

A=[;i] mdB:[é] (32)
with n = 2, and hence
P= [ 0 5 ] (33)

Thus the system S is controllable if and only if 8 # 0.
For the system Sz we have ny = 1 and hence P = By = §, so S is controllable if and only if

B # 0.

Thus S is controllable if and only if S, is controllable.



iii. With the given data, we have C ={1 0] and D =0, so:

oo = (o[ 5 2] 4]0 (34
—a 1 1

- = 0(]3[_81)[13—2)_—113][0] (35)

- et

Thus we have a second-order transfer function when § is controllable — as expected since n = 2
— but only first-order when S is not controllable. Note also that in the latter case the pole of
the transfer function is the same as the pole of S;, whereas in the former case both poles are
shifted by the feedback through Ss.

4,

(a)

(b)

(c)

Bookwork. Standard block diagram.

A state observer is a system which has u and y as inputs, and £ as output, such that & is an estimate
of the state x of a system described by the state-space equations & = Az + Bu, y=Czx + Du. £ is
an estimate of z in the sense that £ — & — 0 as t — oo. A state observer consists of a copy of the
system being observed, with additional feedback of the error z — £ through a gain matrix L.

From the block diagram, the equations governing the system being observed and the state observer
are

dz

= = As+Bu (37)
dé . .
i At + Bu+ L(y—19) (38)

where § = C% 4 Du. Defining the state estimation error e = z — & and subtracting these equations
gives d

?z% = (A—LC)e (39)
The behaviour of the estimation error e is thus governed by the matrix A — LC. In particular, the
eigenvalues of this matrix will determine whether the observer is stable, ie whether e converges to 0,
and how fast it does so.
Now the eigenvalues of a matrix are not changed if it is transposed, so the eigenvalues of A — LC are
the same as those of (A — LC)T = AT — CTLT. So if the desired eigenvalue locations for A — LC

are stored in poles then the algorithm place can be called as
place(A’,C’,poles)

to give LT, and the result transposed to get L.

Condition: For this to succeed, the system being observed must be observable.

To estimate T}, using a state observer, consider T, to be an additional state variable, with governing
equation Ty, = 0, that is assume that 77, is constant. Combining this with the equation given for w
leads to the state-space description

2] [ VB8
w = [1 0][,_,‘:” (41)

The observability matrix for this system is |
S AR (42)

which is non-singular, so the system is observable.
It is therefore possible to design a stable observer for this system which will give 77, as one of its

~

outputs, such that T, — T, — 0 as t — oo.



(d) Choosing L such that fast convergence of T, to T}, is obtained is likely to require Jarge numerical
values in L. If the measurements of w are noisy then the noise will be amplified by these large
values, and will result in erratic estimates of T;. In this case it will be desirable to allow slower
convergence of the estimate, which will allow the estimate to be smoothed, as more weight is put on
the dynamies built in to the model, and less weight on individual measurements. A compromise will
be needed, so that the speed of convergence remains high enough for the estimate to be useful. The
more noise on the measurements, the slower the appropriate convergence speed. Also, as the noise
level increases, the measurement of w becomes lgss reliable, so that the estimate & obtained from the
observer becomes of interest; the design will need to ensure that this also converges quickly enough
to be useful, without being too noisy.




