2011 PartllA  3F3 Signal and pattern processing  Prof S Godsil

1 Examiner’s comment;

A fairly popular question, but not well answered in general. A significant part was
taken from the lecture notes, but clearly not learned by many candidates.

(@) The DFT of a sequence {xp} is {X,}, and that of a second sequence {y,} is
{Yp},forn=0,1,..,N~1and p=0, 1, ..., N — 1. We obtain a third DFT, Zp = XpYp,
by multiplying X, and Y,. Show that the inverse DFT of {Z,} can be expressed in the

following form:
N-1

in = Z YmXmod(n—m,N)
m=0

where mod(P,N) denotes the number P represented in modulo N arithmetic, e.g.
mod(3,10) = mod(13,10) = 3, etc. [40%]

Answer: This was covered in the lecture course.
To see why this is so [note this is worked through with Y=HX instead of Z=YX]

N-1 —Jj2nnm N-1 —j2nnm
Ym =Hme, Where Hm = Z hne ’ Xm = Z Xné
n=0 n=0
Thus,
N-1 —Jj2mnym N-1 —Jj2nnym
Ym= Z hnle Z xnze
n1=0 ny=0
Taking inverse DFTs:
1Nzl (N=1 —j2anym N-1 —j2nnym Z'm%Zﬂ
=5 )3 { ) fmge Y Fnpe e’
m=0 {n;=0 ny=0
1 N1 N-1 =1 —jpr(ny+ny—p)m
=y L Zhnlxnzie v
n1—0n2—0
1 NS AL N, mod(ny+ny;—p,N)=0
=N Z Y Fnyny X .
nl—onz—o 0, otherwise
NN 1 N-1

Z hnlxmod(p -ny,N) = ZO hnxmod(p—n,N) '

nl—
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(b) Now, assume that the sequence {y,} contains non-zero values only in its first
M elements, i.e.

Yr =305 V15 -, YM~1, O, 0> eeey 0.

Explain why, in this case, the inverse DFT of {Z,} is equal to the standard discrete time
convolution of {xy} with {y, }, but that this only applies for time indexesn=M,...,.N—1,

i.e. that:
M-1

in = Z YmXn—m, n:M,,N—l

m=0

Answer:

Consider filtering a sequence x with a filter h having order M [once again, we are
using Y, H and X instead of Z, Y and X]. The required_ convolution is:

Yn= Z%:() hmXn—m
Now, for a data length N>M. We notice that for M-1<n<N,
mod(n-m,N)=n-m

In other words, the result of cyclic convolution is the same as that of standard
convolution:

Yn = Z%=O hmXxn—m = 2%___0 hmxmod(n—m,N)’ M-1<n<N

as required.

© Q@ Describe how the results in (a) and (b) above can be used to
implement FIR ﬁlteﬁng with M = 100 filter taps on a long sequence of data
whose length is N — M, where N =22 > M, and Qis an integer. Assume that
all data prior to time n = 0 are zero-valued.

Answer:

This is essentially the overlap-save method that filters a long sequence
of data x in chunks of length N-M, as follows:

Say, hy is the impulse response of the FIR filter, and is of length M.
Choose a much longer blocklength N, append N-(M) zeros to make the vector
y and compute its DFT' Y via the DFT. Note that Y only needs to be calculated
once. Then compute the FFT of the data, with M zeros appended at the start.
This is X. Then, multiply Z=YX elementwise, take inverse DFT. delete first
M elements and these are the correctly fiiltered version of {x,}, as shown by
the result of part b).

(TURN OVER for continuation of Question 1
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(i) Determine the computational load of such a scheme, in terms of real
additions and multiplications, in the case where the DFTs are implemented
using an appropriate fast algorithm.

Answer: Direct method using full DFT (this not required in the
solution): DFT of zero-padded x takes N2 complex multiplies = 4N? real
multiplies and N2 complex additions = 2N? real additions. Elementwise
product YX takes N complex multiplies = 4N real multiplies. Inverse DFT
takes the same time as forward DFT.

Total is 8N2 + 4N multiplies and 8N?2 additions.

An appropriate fast algorithm is the FFT. This will take 4(N/2)log, N
real multiplications plus 6(N/2)log, N real additions, instead of the 4N2
multiplies and 2N? additions of the direct DFT. Thus,

Total is 4N log, N +4N multiplies plus 6N log, N additions.

(iii) Determine the length of data N below which the fast DFT-
based algorithm will achieve a reduction in total operation count
(real multiplications plus additions) compared with a direct time-doman
implementation of the M = 100 filter.

You may assume that the DFT of the filter’s impulse response has been
pre-computed and that N is much greater than M. ‘

Answer:

The direct time-domain implementation requires (N — M)M real
multiplies and (N — M)(M — 1) additions, a total of approximately 2NM real
operations for large N.

Comparing (ii) with the time-domain implementation, we see that (for
large N >> M so that we can neglect the 4N terms and N — M =~ N) the total
number of operations becomes equal once:

10Nlogy N =2NM

ie. 50 =M and Q = 20 - hence at data lengths of N < 220 we gain an
improvement compared with the direct time-domain implementation.

Examiner’s comment: very few candidates worked through to a
reasonable answer in this last part.

[10%]

[15%]



2 Examiner’s comment:

A very popular question and well answered by most.

(a) Explain the terms IIR and FIR in digital filtering. How is the filter’s impulse
response calculated from the filter coefficients in each case? Describe, with diagrams,
how to implement an IIR filter using Direct Form I and Direct Form II structures,
indicating any advantages or disadvantages of the two approaches. ‘ [30%]
Answer: This is a very standard piece of bookwork from the lecture notes. The
folliowing answer is much more extensive than would be required under exam conditions.

The general form for the digital filter is

Yn = —Q1Yp—1—a2Yp-2— ... —ANYn—N +boxn+ ... +byxn_pm
N M
= =Y @i+ Y, bixng
k=1 k=0

where the coefficients {a; } and {b;} are real.

The larger of M or N is known as the order of the filter.

By applying the z-transform, one can obtain the transfer function of the system:

Y() _ Tob*

H(z) =
S (G T
= by
H2I=1 (1-pzt)
thus
M b —jkw
H (o) Li—o bk

1+ Zﬁ:l age ko .
0 Iy (1—2e™7®)
Iy (1 - prei®)
where the {z;} and {p;} may be complex-valued. The complex-valued poles and zeros
occur in complex-conjugate pairs.

IIR - infinite impulse response - the filter’s digital impulse response never decays
to zero. These filters have both poles and zeros and hence both a and & coefficients in
the above. To get the impulse response, take inverse z-transforms of the filter’s z-domain
transfer function.

(TURN OVER for continuation of Question 2



FIR - finite impulse response - the filter’s digital impulse response has only a finite
number of non-zero terms, and hence only b coefficients (N = 0 above). These filters
have only zeros (except for ‘trivial’ poles at the origin). The impulse response in this case
equals the filter coefficients.

The transfer function of the IIR filter is

Z%:o ka_k
H(z)= N %

The direct form I implementation is straightforward and is illustrated in Figure 1.

/
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Fig. 1

In fixed point or VLSI implementation, direct form is not usually a good idea
because one has often severe speed and power consumption constraints.

If speed is the main concern, then if multiplications take longer than additions, we
aim to reduce the number of multiplications; otherwise to reduce the total operation count.
The area of a fixed-point parallel multiplier is proportional to the product of the coefficient
and data wordlengths, making wordlength reduction advantageous.

Hence much work has gone into structures which allow reductions in
sthe number of multipliers; or

sthe total operation count (multipliers, adders and perhaps delays); or

edata or coefficient wordlengths

(cont.



If power consumption is the concern, then reducing total operation count and wordlength
are desirable. Since general multiplication takes much more power than addition, we
try to reduce the number of multiplications, or to replace general multiplications by, for
example, binary shifts.

The alternative structures for IIR filters implementation include parallel, cascade
and feedback implementations. In general, in fixed-point implementation alternative
structures may offer the following advantages: decreased number of multiplications or
overall computational load, reduced sensitivity of the response to coefficients imprecision
(coefficient quantisation), reduced quantisation noise among others.

The direct form II structure is obtain if one looks at a transfer function as a cascade
of Hy (z) and Hy (z) where (N = M for convenience in this example)

1

N
H@=Y bt H(2) = ——.
kgo 1+3N az*

Hj (z) can be realized with a parallel structure and H, (z) with a feedback structure (where
the Zjlyzl axz* part in H (z) can be realized with another parallel structure). Putting all
together, we obtain the block diagram displayed in Figure 2. Direct form II is preferable
to Direct form I as it requires a smaller number of memory locations.
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Fig. 2

(b) It is proposed to convert an analogue prototype low-pass filter using the

(TURN OVER for continuation of Question 2



substitution formula )
s+ w0

s(@y — o)’
where s is the standard Laplace variable. @, and ®; are constants satisfying @, > @.
Describe the effect of this transformation on the filter’s frequency response,
explaining with the aid of sketches. Consider in particular the frequencies 0, @1, @,
and oo rad.s~! in the transformed filter.

Answer: this is a low-pass to bandpass transformation with lower and upper cut-offs
at @) and @, respectively. Taking s = jo we get the equivalent frequency substitution:

02— o0

w —
0w, — o)

In particular, taking @ = 0, we find that this corresponds to @' =  in the original
prototype filter, and so does ® = 0. Hence frequencies 0 and oo are heavily attentuated
in the transformed filter. @ corresponds to @’ = —1 in the original filter and and @, to
o' = +1, which means that these two values define corner (typically 3dB) frequencies in
the new filter. Finally, the frequency @' = 0 corresponds to @ = /@10, (the ‘geometric
mean’) in the bandpass design, a frequency that lies in the passband between ®; and w,,
hence the bandpass region is between @; and @,.

A sketch of this would be of the form:

©,=30, 0,780, 0=-(-0.2+80"30)./(v*(80-30))

3dB frsquencg
3dB frequency

Analogue prototype frequency
&

-10

i i i i i
10 20 40 50 60 70 8 90 100
Transformed frequency

()  Alow-pass analogue filter with -3dB frequency of 1 rad.s~! has the following
transfer function: .
H(s) =——.
() =117

(cont.
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In a digital audio system it is desired to reduce the effects of bass ‘boom’ up to 200Hz
and percussion noise above 8kHz. The sampling frequency of the system is 44.1 kHz.
Starting with the analogue prototype filter above, design a bandpass digital IIR filter
according to these criteria, assuming that -3dB attenuation will be adequate at the edges
of the filter’s pass-band.
Answer:

First warp the cut-off frequencies from normalised digital ‘Q’ to analogue ‘®’:

Q1 =200 x 27/44100 — o = tan(Q; /2) = 0.0142rad.s .

Qy = 8000 x 275/44100 — @y = tan(Qy /2) = 0.6408rad.s~

Then, using these warped values, perform the low-pass to bandpass transformation
from part b):

1

s> +a1an
s(@p—y) T 1
1
52+ 0 )
S(@p—ay)
_ s(op — o)
52+ 010y + 5o — o)

H(s) —

Now, apply biliinear transform,

H(z)=H(s)| _;_,-1

Tl T
_ (p—o)(1-27%)
1+ — 0y + 001 + (20107 —2)z7 1 + (1+ @10 — (0 — 01)z72))
_0383(1-z72)
©1-1211z7140.23472
where we have maintained the unity in the numerator and denominator for implementation
purposes.

(TURN OVER for continuation of Question 2
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Determine the poles and zeros of the resulting IR filter and hence explain the shape
of the frequency magnitude response in the digital domain. [20%]

The zeros are at =1 by inspection. The poles are at

z=10.970, 0.2143

Hence not resonant poles (compared say with
the examples sheet case). However, it does achieve the required frequency response:
) freqz@.383°1 0-1)41-1.211 0.234)
\\\
—
—

N

Magnitude (4E)

08 s
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The zeros at &1 cause the deep troughs at normalised frequencies of 0 and 7. The poles
serve to adjust the magnitude response so it is passband in the correct region - note that
both poles are on the positive real axis, hence they bias the passband to be in the frequency

range 0 to 7.



3 Examiner’s comment:

This question was very well answered by many - there was good fluency in
manipulation of expectations and calculation of optimal filters.

() In a data measurement system, some of the data points x, are found to
be heavily corrupted with noise. It is decided to ‘clean’ the data by performing an
interpolation of an anomolous data point at time index ng according to the formula

-ﬁno = QXpg—1 + bxn0+1

where xp,—1 and x,1 are the data points immediately before and after the corrupted
data point at ng, and there are two constants a and b to be determined.

By considering the above equation to be a digital filter which runs over sussessive
values of ng in the signal, giving its output at time ng + 1, i.e. with a unit time delay in
order to make the system causal, determine the frequency response of the interpolation
function. In the case a = b = 0.5, sketch the frequency response of the filter, paying
attention to the DC gain and any 3dB gain points. Is the filter linear phase or not?

Answer:

Impulse response is ... b, 0, a... Hence frequency response is the DTFT of this:
H(e’?) = bexp(jQ) + aexp(—jQ)

Witha=56=0.5,
H(e7*) = cos(Q)

DC gain is unity, 3dB points at Q = /4, 3w /4. The filter is linear phase since it has an
all-real frequency response (hence constant zero delay).

(b) Assume now that {x,} is a wide-sense stationary random process with
autocorrelation function ryx[n]. Determine the optimal coefficients a and b that will
minimize the mean-squared error in the interpolator, i.e. to minimize

Eng=E [(xno _fno)z]

Answer:

(TURN OVER for continuation of Question 3
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Eny = E[(xno _ﬁno)z]
= E[(tny — (-1 + by 11))7]
= r{0](1+a® +b%) +r{l)(—2a+ —2b) + 2abr]2)]

To minimize this (dropping the ‘xx’ for convenience): :

%8 =2ar[0] —2r[1] 4+ 2br[2] =0

%8 = 2br[0] —2r[1] +2ar2] =0

Therefore,
r[2]/r[0](=2r[1]+2br[2]) —2br[0] +2r[1] =0, b(—2r[0] +2r[2]2/r[0]) =2r[1](r[2]/r[0] - 1),
and

Lol =ro) _ o1
(2R —+0P) ~ 2+ r0]

and, by similar reasoning (or by symmetry):

L
r[2] + r[0]

() Ifrxx[n]=(-0.9) Il determine the mean—ysquared error corresponding to the
optimal interpolator just derived. [20%]

Answer:
With this r{n],
a=-09/(1+0.81)=-0.4972=b

Now evaluate the mean-squared error:

r[0}(1 4 a® + b?) + r[1](—2a+ —2b) + 2abr|2]
= 14049722 +0.49722 + (—0.9) x4 % 0.4947 + 2+ 0.4947% x0.81 = 0.11

[could also use formula in lecture notes for error at optimal coefficients]

(cont.



2

(d) Compare the mean-squared error in part (c) with that of the simple
interpolator in part (a), having a = b = 0.5. Comment on your result. [20%]

Answer:

With a = b = 0.5 we have the following mean-squared error:

r[0](1 + @ +b%) + r[1](—2a + —2b) + 2abr[2)
=1+40.52+0.52+(~0.9) x—2+2%0.25%0.81 = 3.7

We notice that the simple interpolator gives a much higher error than the optimal
filter. This is because the data are negatively correlated atlag 1 (rxx[1] = —0.9) and hence
it is inappropriate to do a simple linear interpolation between the two adjacent data points
if we wish to accurately estimate the missing data point. The optimal filter on the other
hand makes the best possible interpolator in the mean-squared error sense, and notice that
the coefficients are almost negative those of the simple interpolator - we are essentially
just flipping the sign of the simple linear interpolator to get the optimal filter, since the
correlation coefficient is ‘almost’ -1 (actually -0.9).

(TURN OVER



4 Examiner’s comment:

Very unpopular, and poorly answered. As is often the case with this part of the
course, this quesion was fairly easy marks for those who had learned the material.

Consider a binary classification problem with scalar real-valued observations x, and
class labels y € {0, 1}. Assume a model with parameters 6 where ’

1
poy=1x,8)= ——
1 + e— 9x+%

(@) Describe the online learning rule for learning the parameter 6 assuming the
learning algorithm receives one data point at a time.

(b) Consider a data set Z consisting of three data points: (x; =0, y; = 1),
(x2 =—1, y2=0), and (x3 = 1, y3 = 1). Compute the likelihood for the parameters
0 given this data set 9.

(c) Characterise the solution(s) to the maximum likelihood estimate of 8 in part
(b) above. Discuss properties of these solution(s), indicating any problems with the result
and possible ways of resolving those problems.

Solution:

(a) This material was basically covered in lecture 3, slide 8. The idea is to write
down the likelihood function for each data point and move 6 a small amount in the
direction of this gradient.

P(y|x,0) = 6(6x—0.57(1—06(6x—0.5)1~
InP(y|x,0) = ylno(6x—0.5)+(1—y)ln(l—oc(6x—0.5))
use: dlno(z) — o(—2)
"0z
let:z = 6x—0.5
W = yx0o(—z) — (1 -y)xc(z)
= yx—yx0(z) —x0(z) +yx0(z)
= (y—o(2)x

The online learning rule changes the parameters 6 at each step ¢ by a small step 7 in the

_ (cont.
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_—

direction given by the maximum likelihood step above:
9t+1 — 6+ T[(yt — O'(th, — 1/2))xt

(b) Multiplying the probabilities of each observation we get that the likelihood is:

1 e9+1/2 1
(1+el/2> 1+ee+1/2 <1+e—6+1/2>
(7o) (o) ()
14+e1/2) \14+e0-1/2 ) \14¢-0+1/2

(c) To maximise the above likelihood we write down the log likelihood and drop additive

or equivalently:

constants getting for the first expression above:
L=6—In(1+e%71/2) _1n(1+¢0+1/2)
for the second expression:
L=—In(14¢"9"1/2) _In(1 4 .~0+1/2)

The second expression in the solution to (b) is easier to analyse. It’s clear that the
likelihood increases monotonically as 6 increases. This means that the maximum
likelihood occurs at the limit of & — . Looking at the configuaration of the data,
this solution makes sense since the data is perfectly separable and increasing 6 simply
increases the slope of the logistic function.

The solution is problematic because of the basis of three data points the model will
make absolutely certain predictions for new points. Two ways of resolving this problem
are either to add a penalty term or prior to the log likelihood function, or to do Bayesian
learning of the parameter 6 (see Lecture 3:Classification, Slide 10).

END OF PAPER



