2011 PartllA 3G4 Medical imaging and 3-D computer graphics Dr A Gee

Engineering Tripos Part ITA THIRD YEAR

Module 3G4: Medical Imaging & 3D Computer Graphics
Solutions to 2011 Tripos Paper

1. Fundamentals of computed tomography

(a)
at+c=18
b+d=24
b+c=30
a+b=26
[10%)]
(b) .
1010 a \ 18
0101 b | | 24
0110 e | | 30
1100 d) 26
1010 \
0101
“lo110|™¥
1100) [10%)
(c) The most obvious ways to proceed are either to solve the equations by substitu-
tion, or to invert the 4 x 4 matrix M. By substitution:
a=18—-¢
b=26—a=8+c¢
c=30-b=22—-¢
=c¢=11
so b=19
a=7
and d=24—-b=35
Soa=7,b=19,c=11 and d = 5. [20%)

(d) There are four key differences: scale, redundancy, consistency and noise.

The first of these is obvious. In a typical CT scan there is a much finer resolution
in the computed image and vastly more projection data. Suppose that the image

1

is 256 x 256, it would not be efficient to invert a 2562 x 2562 matrix by Gaussian
elimination.

In medical image data there will never be the same number of equations as unknowns.
The projection data will contain a substantial element of redundancy and the solution
method must therefore take all this richness into account.

Redundancy brings with it the problem of inconsistency. It is unlikely that a solu-
tion will exist that exactly satisfies all of the constraints implicit in the projection
data. The solution will need to include a method of balancing these constraints and
producing the best compromise solution. The easiest way to do this is to calculate
the solution that results in the smallest mean squared error between predicted and
measured projection data.

Finally, the projection data will include systematic measurement errors and random
noise. Examples include cupping in CT data, statistical variations in the gamma
photon reception in SPECT data, and simple measurement noise. In SPECT data,
where there is a high level of noise, it is necessary to use algorithms that can model the
noise and compensate for it, such as maximum likelihood expectation maximisation
(ML-EM).

(e) In this case, the matrix M is given by

1010
0101
M= 1100
0011

This is singular, so there is no unique solution. Any combination of values that
satisfies a =3 — b =4 — ¢ = d — 3 is a possible solution. It is therefore not possible
to solve for the linear attenuation coefficients of the rods.

. Medical imaging modalities and resolution

(a) (i) In two-dimensional ultrasonic imaging, the axial resolution is mainly limited
by the pulse centre frequency. The lateral resolution is determined by the geometry
of the transducer array and the combination of apodisation and delays that comprise
the beam-forming algorithm. It also depends on whether static or dynamic receive
beam-forming is employed. The elevational (out of plane) resolution is determined by
the geometry of the acoustic lens used to focus the beam in the elevational direction.

Resolution in the lateral and elevational directions vary significantly with the depth
in the image. In the elevational direction the resolution is highest at the focus of the
acoustic lens. The same is true in the lateral direction, where the best resolution is
at the transmit-focus of the beam-former (assuming dynamic receive beam-forming).
The lateral resolution also degrades at the extreme edges of the B-scan image where a
symmetrical excitation pattern is not possible. The axial resolution degrades slightly
with depth due to pulse dispersion and poor signal-to-noise ratio.

2

[40%]

[20%]

[25%]

(ii) In X-ray computed tomography, the in-plane resolution is predominantly deter-
mined by the beam width, the geometry and granularity of the receiver array and
the number of projection images that are recorded. The out-of-plane resolution is
determined by the beam width and the distance between the slices. CT resolution
is isotropic within each scan-plane, but different, and usually lower perpendicular to
the scan-plane. The resolution does not vary greatly as a function of the location
within each slice.

(iii) In SPECT imaging, the resolution is determined by the geometry of the colli-
mator, scintillation crystals and detectors. It also depends on the amplitude of the
emitted radiation being appropriate. If there is too much radiation, there will be
clashes between received gamma photons which will be removed by energy filtering.
If there is too little radiation, the signal-to-noise ratio will be poor. In either of these
cases it will be difficult to form an image. The resolution will vary with location in
the data because of the spatial variability of the “collimator resolution.” The effect of
this is to give lower resolution at points in the middle of the subject that are not close
to the camera at any point during the scan. This effect will also create anisotropy
because a source will be located most accurately in directions perpendicular to the
face of a nearby collimator. See the diagram below.

At this point, there is a larger distance to

gamma camera B, than to gamma camera A.

Hence the horisontal resolution is better than
the vertical resolution.

| gamma camera B

| _gamma camera A]

(b) Spatial encoding in magnetic resonance imaging is achieved using three different
configurations of the gradient fields to modulate the response in three orthogonal
directions. In relation to a spin-echo sequence, we have the following three stages.

During the first gradient field configuration, the RF pulse is applied. This results in
slice selection: as only the slice in the field with a resonant frequency the same as
the RF pulse gets rotated by 7/2.

The second gradient field configuration is applied for a short time and serves to
apply a spatially varying phase encoding to the response. This is achieved because
different strengths of field leave the spins with different phase values. This is called
phase selection.

The final gradient field configuration is applied during the readout phase while the
MR data is recorded. This results in spatially-varying frequency modulation of the
signal.

[25%]

[25%]

The overall result of these three constraints is to enable the MR response of each
point in 3D space to be individually identified.

% pulse with narrow
~— < range of frequencies
RF-

Z
| ‘readout
phase selection

slice selection

[25%)

3. Mesh manipulation and contour areas

(a) (i) For A, the first step is to find which vertex the user has clicked on, which can
only be done by searching through the list of triangles working out the distance to the
click point and selecting the triangle vertex with the minimum distance. However, it
is likely that several triangles will contain this vertex, and the floating point numbers
may not be identical, so some sort of distance margin may be necessary to locate
them. Once the user has moved the vertex, the new location needs to be recorded in
all of these triangles.

For B, the first step involves searching the point list and finding the closest point to
where the user clicked. The coordinates of this point can be adjusted once the user
has moved the vertex: the triangle list remains unchanged. Clearly this is better
than option A, since there are three times fewer points to search initially, only one
to update, and no ambiguity.

(ii) For A, having found the points in all relevant triangles as in (i), these triangles can
be removed from the list. No other updating is necessary. For B, having found the
point and deleted it, the deletion will affect the indices of other points in the list, and
hence all the vertices in the triangle list have to be checked and possibly updated to
reflect the changed indices, as well as removing any triangles which actually contain
the vertex.

In this case option A is probably the easiest option, since it does not require re-
indexing of the triangle list. The time advantage in searching through fewer vertices
to find the selected vertex in option B is almost certainly lost in the subsequent
re-indexing of the triangle list.

(iii) Finding an edge is & more complex operation. In this case we need to check
each side of each triangle to see whether the click point lies on a line joining the two
vertices either side of the edge. This is most easily done by looking at the scalar
product of a normalised vector from the click point to each of two vertices: if this is
—1, then the click point lies on the edge in question.

4

For option A, we need to perform this check three times for each triangle. Having
found the triangles containing the selected edge, these should be deleted (since they
will have zero area after the edge is reduced). However, we also need to replace
both vertices in any other triangles containing them with a new vertex positioned
somewhere along the original edge. So this necessitates a further search through the
triangle list. ‘

For option B, the operation is nearly the same — we still need to search through the
trigngle list to find out which edge the user clicked an, since this tells us which points
are joined together at the edges. However, we will need to refer to the point list to
do the calculations. Having found and deleted the triangles containing the edges, we
now have to replace one of the vertices (say vy) in the point list with a new vertex,
and delete the other one (say vy). Then the triangle list must be searched again,
both to re-label any reference to v, with v; and also to re-index the vertices since we
have deleted one, as in (ii).

There is not much to choose between representations for this operation: we really
need to use an edge-list representation to make this task easier.

(b) (i) There are several methods for finding the area of a closed contour. Probably
the easiest is to take the sum of the areas of all the triangles formed from joining
each line in the contour to the origin:

Vi

—Area swept once only

Area swept twice in opposite directions

A=%{(VNXV1)+Z_(VnXVh+1)} ?K

(ii) The B-spline geometry matrices each consist of four contour points, and in order
to maintain continuity, each segment must only introduce one new point. The seg-
ment is drawn between the second and third points in the geometry matrix, so the
maftrices, in order of segment number, are:

@3 Y3 To Yo T1 % T U2
To Yo AT) T2 Yo T3 Y3
z1 Y|’ T2 Yo T3 Y3 To Yo
T2 Y2 T3 Y3 o Yo 1

This representation will only approximate the contour vertices, not interpolate them,
so it is only a good idea if the vertices are reasonably dense, or if they contain noise
(for example hand tremor) which it is desired to remove.

(iii) We can calculate the enclosed area of the B-spline representation by breaking
each segment down into small parts and applying the equation above for calculating
the polygonal area. Taking a single segment:

A, = Zvn X Vu(t + At)
= —Zvn) X (Va(t) + va! (£)At)
= 3 ;v,,(t) X vy (£) At

In the limit, this becomes the integral:

1

1
A, = —/ vn(t) X vi/(t) dt
2 0 1

which can be evaluated numerically for each B-spline segment.

. Radial basis function interpolation

(a) (i) ¢(rn) is the basis function. There are as many of these as there are mea-
surements to be interpolated, and each is a function of r,,, the distance between the
current location and the measurement location. Since s(z,y) is made up of a sum
of these functions, the smoothness and continuity of s(z,y) is largely based on the
basis functions ¢.

The polynomial p(z,y) exists to ensure that the system of equations is solvable: it
may or may not be needed, depending on the type of basis function chosen and the
domain over which measurements are made. s(z,y) is increasingly dominated by this
polynomial function far away from the measurement locations.

The constants A, weight each basis function, and are calculated to ensure that s(z, y)
interpolates a given set of data.

(ii) The matrix equation is based on interpolation and side conditions. The interpo-
lation conditions, in the upper rows of the matrix equation, state that if s(z,y) is
evaluated at one of the measurement locations, the original measurement should be
returned: i.e. it is an interpolating function. Hence there is one row per measurement,
each evaluating s(z,,yn) = fn for 1 <n < N.

The remaining three rows represent the side conditions. These state that the weighted
sum of any polynomial of the same degree as p(z, y), evaluated at the measurement

locations and weighted by the A, values, should equal zero:

N
Z /\nq(xn: .Un) = 0
n=1

Since this has to be true for any polynomial ¢(z,y), this can be interpreted as:

N N N
ZAnyn = Z/\nxn = Z/\n =0
n=1 n=1

n=1

The purpose of these conditions is to ensure that the matrix system has a unique
solution and hence is solvable.

(b) (i) The matrix in this case is:

0 1 1 V2100 A 0
1 0 v2 1 110 s 1
1 v2 0 1 101 A3 1
vV2 1 1 0 111 M| =10
1 1 1 1 000 Co 0
0 1 0 1 000 c 0
| 0 0 1 1 000 | e |O]
(ii) The lowest row gives:
s = =g
the next row up gives:
Ap = —Mg

and combined with the third from last row, we have:
M =M
Using these substitutions and considering the first row:
e =(2—V2)M\
and from the second row:
2=VDM+e+ea=1

Henece:
e =1-2(2— V2N

And similarly for the third row:
C12=1—2(2—"\/§))\4=01

7

Finally, the fourth row gives:

(V2=2M+c+eci+c=0

Hence !
M=
2(2 — V/2)
and finally:
1
M o= ——
V20— VR)
1
Ao = ———
2 2(2 - v2)
1
g = ——
: 2(2 — V2)
1
A e —
YT 92 =R
1
© =3
g = 0
Cy = 0

(ili) s(z,y) is equal to 0.5 at all these locations. In fact it is 0.5 everywhere on the
lines z = 0.5 and y = 0.5, which can also be seen from the symmetry of the RBF and
the measurement locations and data. For reference (not required in the question),
the full function is shown above.

(c) There are two possible Delaunay triangulations of the measurement locations,
one with a diagonal connection between (0,0) and (1,1) and one with a diagonal

8

connection between (0,1) and (1,0). In the former case, linear interpolation would
return the value 0 for the mid-point (0.5,0.5), in the latter case it would return 1 at
this point. Hence the interpolated data is highly dependent on which triangulation
is chosen, and unlike the RBF neither triangulation results in an interpolant which
has the same symmetry as the original data.

The interpolated values along the sides of the cube (0, 0) to (0, 1) etc. are very similar
for the Delaunay triangulation and the radial basis function, though the radial basis
function does not give an exactly linear variation between 0 and 1: s(z,y) returns
0.26 at (0,0.25).

. Ray tracing and environment mapping

(a) Recursive ray tracing is a rendering technique which accounts for a degree of
indirect illumination. It elegantly combines hidden surface removal, transparency
effects and shadow computation into a single model.

Simple ray tracing algorithms operate in world coordinates. A ray V is fired from
the centre of projection through every pixel on the screen. When the ray strikes an
object at P, further rays are spawned. One ray, L;, heads for the sth light source.
If L, passes through other objects on the way, then the illumination intensity is
attenuated by a shadow factor S;, depending on the number and opacity of objects
in the way.

As well as these shadow feelers, the algorithm also spawns a reflection ray R;
and a refraction ray T;. The direction of the refraction ray is determined from the
refraction indices using Snell’s law. The intensity of the pixel is then

In=claka+ Y SifarrLpi(crkaLi N + kg (Ri.V)™) + koIpx + ki

9

where I, is the intensity of the reflection ray and Iy, is the intensity of the refraction
ray. k; is a transmission coefficient in the range 0 to 1.

Values for I, and I, are found by recursively evaluating the equation at the surfaces
R; and T; next intersect (P, and P3), with Py as the new viewpoint. So the progress
of the algorithm follows a ray tree:

R, T, Ry Ts

The tree is constructed top down, until either a ray fails to intersect an object or some
predetermined maximum depth is reached. The tree is then evaluated bottom-up, as
each node’s intensity is computed from its children’s intensities.

Compared with standard surface rendering, recursive ray tracing produces more
photo-realistic results but requires much more computation. However, the ray trac-
ing algorithm is easily parallelized and could run at a reasonable (but not interactive)
rate on a multiprocessor machine, especially if bounding boxes are used to speed up
intersection tests.

(b) No, back-face culling and ray tracing do not mix. Even if the scene comprises
only solid (not hollow) polyedhra, polygons oriented away from the camera may well
be visible reflected in other surfaces, so cannot be ignored.

(c) The obvious advantage of environment mapping is speed. Everything fits into
the standard surface rendering pipeline and can therefore take advantage of standard
graphics hardware. Even the calculation of the mirror rays R is similar to what has to
be done for specular lighting calculations. OpenGL and DirectX both support cubic
environment mapping, and it runs at interactive rates on modest graphics cards.

While environment mapping certainly gives the impression of the environment re-
flected in the shiny object, ray tracing provides far more accurate rendering. Here
are some shortcomings of environment mapping.

¢ There is no parallax in the reflection, it is as if everything were a very long way

away. In reality, if the reflection includes, say, a nearby tree in front of some
distant mountains then, as the object moves, the reflected tree should also move

10

[50%)

[10%]

with respect to the reflected mountains. But this clearly cannot happen with
environment mapping, since the texture maps are static and capture just one
view of the tree and the mountains.

e Only the environment is reflected, not any inter-reflections from the object itself.
This is only accurate if the object is convex.

e Refraction is not handled at all.

e The reflection will not respond faithfully to lighting changes.

There is also the matter of acquiring and filtering the six texture maps with appro-
priate care. Look carefully at the figure in the question and observe how there are
no discontinuities at the seams between the cube’s faces. This is critical to avoid
obvious artefacts in the reflection.

. Interpolation and texture mapping

(a) Both Gouraud and Phong shading work with vertez normals, which are found by
averaging the normals of all polygons incident at a vertex. Gouraud shading proceeds
by calculating a colour at each vertex using the vertex normal and the Phong model.
Colours for interior pixels are found by bilinear interpolation. For efficiency, the
interpolation can be formulated using fast, incremental calculations.

Phong shading interpolates the normals instead of the intensities. Even though the
normals can be interpolated using incremental calculations, the interpolation handles
the three components independently, so the vector must be renormalized at each pixel.
Then, a separate intensity for each pixel is calculated using the Phong model.

For both shading methods, bilinear interpolation is used to derive depth (z,) values
within the interior from those at the vertices.

(b) (i) C is half way along the rendered edge from A to B, so o = 0.5. Using the
linear equation, we obtain f,—g5 = %to + %tl. The more complicated equation gives
0.5(t0/10) +0.5(t1/20) _ 2t +1t; 2 1

a=0.5 — = = -~ —t
tes0s = 10 5/10) (05/20) 241 _30°t3h

So the linear equation maps the texture point (so, 3to + 4t1) to C, ie. half way up
the left edge of the map. This is clearly wrong, since C is not half way along the
chessboard in object coordinates: considering the perspective compression of distant
objects, C must be nearer A than B. The more complicated equation maps the texture
point (sg, %to + %tl) to C, i.e. a third of the way up the left edge of the map. This is
more plausible: in fact, it is perspective correct interpolation, though a formal proof
is not required here. The figure below shows the likely appearance of the renderings.

11

[40%%]

[25%]

(so!to) (shtc) . ' . . .
normal view linear interpolation perspective interpolation

(ii) Linear interpolation should be used for z, values, so C’s z, value would be half
way between those of A and B. Note how this would place C’s z, value nearer to A’s
than B’s, which is correct. The perspective mapping from view coordinates (2,) to
3D screen coordinates (z;) already contains the reciprocal of z, that is required for
perspective correct interpolation. Consequently, simple linear interpolation can be
used for the z, values.

(c) If the chessboard maps to a small number of screen pixels, we need to be very
careful when sampling the texture map. Suppose, say, there are just ten pixels be-
tween A and B. The perspective correct interpolation will furnish ten (sg,,) texture
coordinates, but if we just use these to sample the ten nearest pixels from the tex-
ture map, we can expect a fairly random outcome, depending on whether those ten
coordinates happened to fall on black or white pixels. This is essentially an aliasing
artefact caused by severe undersampling of the texture map.

Better would be to generate a smaller version of the texture map, of about the
same size as the rendered chessboard, by proper downsampling with anti-aliasing
smoothing. Then we could safely index into this smaller texture map, perhaps using
linear interpolation between the texture pixels neighbouring each (sg,%,) value.

To avoid the computational expense of having to calculate the downsampled texture
map on the fly, it is common to generate a set of suitable texture maps in advance,
for instance of sizes 256 x 256, 128 x 128 ...4 x4, 2 x 2 and 1 x 1. This set of images
is known as a mipmap. Then, at render time, the graphics engine selects the most
suitable map according to the rendered area, or perhaps even interpolates between
the two most suitable maps.

For our chessboard, the smaller maps, such as the 2 X 2 one, would just be a uniform
grey: this is what you get if you repeatedly smooth and downsample the chequer-
board image. A small, distant chessboard rendered with the 2 x 2 map would appear
uniformly grey. This is definitely the right thing to do though! Nearest neighbour
sampling of the original, high resolution map would instead furnish a random collec-
tion of black and white pixels, which would change with viewing angle, producing a,
highly distracting artefact in animated sequences.

Andrew Gee, Richard Prager & Graham Treece, December 2010

12

[25%]

[20%)]

[30%)

