ENGINEERING TRIPOS PART LIA

Thursday 28 April 2011 9.00 to 12.00

Module 3A1

FLUID MECHANICS 1

Answer not more than five questions.

All questions carry the same number of marks.

The approximale percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
o 3AI Data Sheet for Applications to External Flows (2 pages);
o  Boundary Layer Theory Data Card (1 page);

e Potential Flow Data Sheet (2 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper. Engineering Data Book.
CUED approved calculator allowed.

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 A two-dimensional inviscid, incompressible flow is produced by a line source of
strength m, located at point (0,a), and a line sink of strength m, located at point (0, —a),
as shown in Fig. 1a.
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Fig. 1

(@) A uniform flow of speed U from left to right is added. Write down the
complex potential for this flow and find the positions of the two stagnation points.

(b) For the case where m/(7aU) is very much smaller than 1 but still positive,
explain why the streamline pattern should look like the sketch in Fig. 1b. Find the
difference of the streamfunction values yg — Y and Yg — W, where points B, C, E
and F are as indicated in Fig. 1b.

(¢} As m/(maU) is gradually increased, the streamlines AS;C and ES,G
approach each other, where S and S, are the two stagnation points indicated in Fig. 1b.
Sketch the streamline pattern when they just merge, and find w4 — g for this case.

(d) Sketch the streamline pattern when m/(7al) is very much larger than 1.

(e) Determine whether any of the flow emanating from the source is captured by
the sink for the case whena=U =1 and m = 7.
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2 (a) Explain what is meant by circulation and the role that it plays in explaining
lift on a body in a two-dimensional incompressible, inviscid flow.

(b) For polar coordinates r and @ , show that the stream function y given by:
,

2\
ay r..
y=U (r——) sm(.é)—oe)—glm

where I', U and « are positive constants, can represent flow around a circular cylinder
and identify the direction of the {low at large distances from the cylinder.

(¢) Forthe case 0 < I' < 4mal, show that there are two stagnation points on the
cylinder and sketch the streamlines of the flow.

(d) Find the lift force on the cylinder and identify clearly on a diagram the
direction in which it acts.

(e) Discuss in what ways high Reynolds number viscous flow would deviate from
the inviscid solution obtained above.
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3 (a) Explain what is meant by vortex stretching. Explain how Kelvin’s Cireulation
Theorem and Stokes’ Theorem applied to vorticity can be used to calculate the vorticity
changes due to vortex stretching in an incompressible, inviscid fluid.

(b) A diffuser with area ratio 2 has a constant height 4 in the y-direction, but
varies with width in the z-direction as shown in Fig. 2. The entry flow to the diffuser has

a velocity profile:
Yy
u=U(1+2)
3h
where U is a constant. The flow through the diffuser may be treated as incompressible
and inviscid. The y and z components of the velocity are very small and can be neglected.
Determine the velocity profile at the exit and the pressure rise across the diffuser.

(c) If the design of the diffuser is changed to increase the outlet width in the z-
direction while keeping the inlet width and the height unchanged, for what value of area
ratio would you expect the flow to separate even when the area variation is very gradual.
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4  An incompressible flow at high Reynolds number past a flat plate is sketched in
Fig. 3. The sharp edge of the plate is at (x,y) = (0,0). The fluid exerts a drag force
on the plate due to the no-slip condition. The velocity distribution #(y) at any particular
downstream position x shows a smooth drop-off to zero at the wall. The velocity just
upstream of the sharp edge is uniform and parallel, # = U = constant, and the flow is
steady.

(a) By considering the conservation of mass, derive an expression for the
boundary-layer displacement thickness 6*(x) at x.

(b) The pressure gradient is zero in this flow. By considering the conservation of
momentum, derive an expression for the momentum thickness 0(x) at x and relate it to
the drag force per unit width from 0 to x on one side of the plate.

(¢) If y(x) is the local shear stress on the plate, write down the total drag per
unit width D on one side of the plate of length L.

(d) The friction coefficient and drag coefficient are defined respectively as:

Ty (%) D
C X) = C =
#(x) 1007 D=Ly

where p is the density of the fluid. Derive expressions for these two coefficients in terms
of the momentum thickness 6(x).

u(y)

No—slip ——Praﬁiori.

Flat plate

U
U
¢
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Fig. 3
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5 A steady laminar boundary layer on a flat plate has a fourth-order polynomial
velocity profile u:

b= (3) v (3 4 (3) )

where U is the free stream velocity, ag, ..., aq are constants and § is a measure of the
boundary layer thickness.

(a) Three boundary conditions for the velocity profile are: u(0) =0, u(8) =U
and du/dy =0 at y = &. Explain the underlying physical meaning of these conditions.

(b) The free stream velocity U is constant, i.e., dU/dx = 0. Derive the two
additional boundary conditions: 92u/dy* =0aty=0andy=§.

(c) Use the above five boundary conditions to determine the five constants ay, ..

-3

ag4, and hence the velocity profile.
(d) Find the momentum thickness & and the local skin friction coefficient C’,f.

(e) Write down the momentum integral equation in terms of the quantities you
found in part (d).

(f) Find the variation of § in terms of Re, = Ux/v, where x is the distance from
the leading edge of the plate (where & = 0) and v is the kinematic viscosity.
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6 (a) Describe the three component flows which are superposed in the classical
two-dimensional thin-airfoil theory.

(b) Derive a relationship between the chordwise distribution of vortici ty and the
camber line slope explaining carefully any approximations made.

(c) Derive a relationship for the airfoil lift coefficient in terms of the vorticity
distribution.

{(d) Hence show that:

1
CrL=2rn0o+n (go+3g1)

where the symbols are defined in the Data Sheet and describe the physical meaning of
each term. You should note that:

T
/0 sinm@sinnd d =0 for m£n

(e) Use the result of part (d) to show how the difference of camber is weighted
towards the rear of the airfoil.

(f)  Explain why the leading term (related to gg), which is different from the other
Fourier series terms, is needed for the Camber solution as shown in the Data Sheet.
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7 . A researcher wants to study the wake behind a bluff body in an open-loop wind-
tunnel. The rear of the body can be simplified as a circular cylinder of 20 mm diameter,
aligned with the flow direction. The free stream velocity is 20 m s~1, and the density of
airis 1.225 kg m—>.

(a) Sketch a basic open-loop wind-tunnel and identify its key components. [20%]

(b) The wind-tunnel has a closed working section of 0.5 m x 0.5 m cross-section
and a total length of 5 m, of which 3 m is allocated to the diffuser. Estimate the minimum
tunnel power requirement and determine the power factor. Identify any key losses not
included in your estimate. [20%]

(¢) The wake flow is to be investigated using two-dimensional PIV. The region
of interest is indicated in Fig. 4. Make a sketch of the PIV set-up identifying the key
components and show where they are placed relative to the bluff body and the working
section. [20%]

20 m/s e -

_—

< [ d=20 mm /<4 : Region of interest

______

Fig. 4

(d) The camera has aresolution of 1024 x 1024 pixels. Using sensible parameters
for the PIV set-up, estimate :

(1) the size of the light sheet;
(i1) the spatial resolution of the measurements;
(iil) the interframe time;
(iv) the maximum and minimum velocities resolved.
[20%]
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9

(¢) Given that the cylinder has a streamwise length of 200 mm, do you think
you can use the above measurement system to determine the shape of the boundary layer
profile growing on the bluff body upstream of the trailing edge? Justify your answer. [20%)]
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8 (a) Describe the use of horseshoe vortices in Lifting-Line Theory.

(b) Derive expressions for the downwash and the downwash angle in Lifting-Line
Theory in terms of the spanwise circulation distribution.

(c) Explain the physical origin of the induced drag. Explain the key steps in the
derivation of an expression for it in terms of the spanwise circulation distribution and the
downwash angle.

(d) Starting from the expressions for the Wing lift and the Induced drag given in
the Data Sheet, derive the following:

2
Cr

Cpi = (1 +b)nAR

and hence show that an elliptic lift distribution has the minimum induced drag. You may
use the following results:

7 n
/ sinmOsinnB dd =— if n=m
/0 2

¥
/0 sinmOsinn® do =0 if n#m

END OF PAPER
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3A1 Data Sheet for Applications to External Flows

Aerodynamic Coefficients

For a flow with free-stream density, p, velocity U and pressure p,:

Pressure coefficient: c, = I,J _P >
7PU
Section lift and drag coefficients: ¢, = lﬂ:t_(]_v_/z_ml, 4= M (section chord ¢)
spU"c spU%c
Wing lift and drag coefficients: C = —hﬁ—(—AQ- Cp drag (V) (wing area S)
0 pU S = pU S
Thin Aerofoil Theory
Geometry Approximate representation
Ay 4y
Y=y (x) Y (%) X
----------- S e LTI TS
.......... < il T, W » a l
o | }V/
. ¢ c
U
U
Pressure coefficient: cp=xy /U

Pitching moment coefficient:

Coordinate transformation:

Incidence solution:

Camber solution:

¢,, =(moment about x = 0)/ 5 pU*c?

x=c(l+cos8)/2 = ccos?(6/2)

y =-2Ua 1- cos0 ¢, =2ma, c, =c, /4
sin 0
1-cosf  ~ .
y==Ulgo— +2 g,sinn6 |, where
sin &

ool

g
=Z'(go +8, +72) =TI+ (g +8,)

f( 22 Y. )cosn@d@
0

g
¢ (g0+7‘,c



Glauert Integral

=7

" cos ne d sinnf
fcosq&—cose sin@

]

Line Vortices

velocity at P of

-—r—(cosa +cospf)

A straight element of circulation I" induces a

4d
perpendicular to the plane containing P and
the element.
Lifting-Line Theory
Spanwise circulation distribution: ﬁrw\
-8 ' s 7
Aspect ratio: Ap =45%/8
$
Wing lift: L= pU |T(y)dy
Ir
L pdl(m)/dn
Downwash angle: a,(y)= d
ownwash ang ) 4.1:U‘£ — n
Induced drag: D, = pU fI‘( a,(y)dy
Fourier series for circulation: I'(y)=Us 2 G, sinnf, with y = -scos@
nodd

Relation between lift and induced drag:
2

2
G ,where 8 = 3(%-) + 5(
|

Cor=(+8) 2

2

G ..
G



Module 3A1
Boundary Layer Theory Data Card

Displacement thickness;
oo U
5 = / (1 - —) d
0 U] 4

Momentum thickness;

_ Ui, °°( _._“_)l
0“/0 g dy—/o -5 ) 5%

Energy thickness;
o (U —u?)u o0 (u)2 u
p = — ey = 1—{—= —

b= 7 J 7)) T

6&
H=%

Prandtl’s boundary layer equations (laminar flow);

u@—l-'va—u = —ld—p—l-l-uagu
8z Oy p dx oy
@_ + @_ = [
O Oy

von Karman momentum integral equation;

fzg+H+20dUI_ ™ _ C}
dr = U, dx pUE 2

Boundary layer equations for turbulent flow;

oz Oy p dx Oy oy?
Oz Oy



Module 3A1 Fluid Mechanics I

POTENTIAL FLOW DATA SHEET

Continuity equation V.u=0

Momentum equation (inviscid) p-g—% =-Vp+pg

D . N 0
— denotes the material derivative, —+u*V

ot

Vorticity @ = VXu
. e e e Dw
Vorticity equation (inviscid) 3';- = o.Vu
.t . o Dr
Kelvin's circulation theorem (inviscid) Dr =0, I'= jg_u_ dl = | w.dS

For an irrotational flow
velocity potential (@) u = V¢ and Vi =0

Bermoulli's equation for inviscid flow,

L %Vz +gz7+ %? = constant throughout flow field, V =|u].

Jo,
TWO-DIMENSIONAL FLOW
Streamfunction (y) Y= _a__c/i o M
‘ dy ox
_loy _ 9%
T ro8’ 4 or
Lift force Lift / unit length = pU(-T)

F
Complex potential F(z) for irrotational flows, with z =x + iy, F(z) = ¢+ iyand -‘—2— =u—iv
2

Examples of complex potentials

(i) uniform flow in x-direction, F(2)=Uz
(ii) source at 2o, F(z)=% ln(z-zo)
(iii) doublet at zo, with axis in x-direction, Y7,
F(z)=s—rt—
27(z-29)
(iv) anticlockwise vortex at Zzo, F (z) - % n (z _ Zo)



Module 3A1 Fluid Mechanics 1

TWO-DIMENSIONAL FLOW
Summary of simple 2-D flow fields
74 circulation U
Uniform flow Ux Uy 0 u=Uv=0
(towards + x)
Source at origin 2y L 0 Uy = up =0
27 27 " 2mr
Doublet at origin Hcos@ Msing 0 ucos@ HUSin6
. — - Uy =-— Jug =—
@is angle from 1r 2 2772 )
doublet axis
Anticlockwise P I I I" around _ _Tr
vortex at origin pys oz origin u =0, ug= Py
THREE-DIMENSIONAL FLOW
Summary of simple 3-D flow fields
¢ u
' m m
Source at origin _—— U, = , ug=0, u;=0
8 4rr " Amr? ¢ ¢
Doublet at origi
(.)u e at origin HcosB Hcos@ usin6
@ is angle from ) Pty Ug == Uy =0
] arr 2rr 4rr
doublet axis
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Numerics Answers

Jie Li
Quesion 3,
(c) Area ratio is v/7.
Question 5,
(c)ap=0,01=2,a0=0,03=—-2and ay = 1.
Question 7,

(b) Power factor A = 0.3.
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