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ENGINEERING PART IIA  3F1 - SIGNALS AND SYSTEMS — May 2012
SOLUTIONS

1 (a) Taking the z—transform of both sides of the difference equation with zero
initial conditions, and putting all ¥ (z) terms on the left, gives ¥ (z)(z®> —z+a) = X(z) .

Rearranging yields
Y(z) _ 1
X(z) Z-z+a

(b) o =0: Poles are the roots of 72—z =0, which gives z = 0, z= 1. Hence,
the system is (marginally) unstable as one pole is on the unit circle, whereas both must be
inside it for true stability.

@= }1: Poles are the roots of z2 —z -I-;lf =0, which gives two poles at z = % Hence,
the system is stable (and has critical damping).

o= %: Poles are the roots of z2 — z+% = (), which gives z = % Since the
magnitude of the poles is 1/1/2, which is less than one, the system is stable.

o = 2: Poles are the roots of z2 —z+2 = 0, which gives z = '—iz‘—‘ﬁ Since the
magnitude of the poles is v/2, which is larger than one, the system is unstable.

(c) Since x is a pulse, X(z) = 1. Then for

o =0
1 |

1
Y(z)zz(z—l) z z—1

Hence, y; = {0,-1,0,0,0,---}+{0,1,1,1,1,---} ={0,0,1,1,1,--- }.

o=1/4

I 3T

(z—3)? (1-g2~ 1)
Hence, using the hint with a 1-sample delay, y, = 0 for k=0, 1 and y, = 2(k—1)(1/2)"!
fork > 2.

oa=1/2:

Y(z) =

1 72

Y(z) = =
2= 1 2
¥—zt3 1—2;}3::05%2‘14-(‘}%) e

Hence, using the data book result with a delay of 2 samples due to the numerator term,

k-3
ye=0fork=0,1andy, = (—==) sin(%(k—1)) fork>2.
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pulse responses
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The pulse responses can be seen in Fig. 1. Note that all three responses are the same

up to k= 3. [30%]
(d)y () Denote the transfer function from X to ¥, evaluated above, as G,
ie. Y =GX. Since X =K(R—Y) thenY =GK(R—Y) andso Y(GK +1) =
GKR. Hence,

Y Gk K
R GK+1 Z2Z—z4a+K

[15%]

(ii) The denominator of this expression determines stability, and it is the
same as that in part (a), except that o is replaced by o + K. Hence,
using the results from part (b), the system will be stable if 0 < & + K < I.
Critical damping is achieved if o +K = ?II’ and stability will be achieved if
—0¢ < K < 1 — ¢t Thus there is no single K which will stabilise the system if
¢ varies from 0 to 2.

For critical damping, suitable values of K, for the four given values of
o, would be ﬁ,(),—%,—%, although K = 0 would not be practically useful
since the numerator of the closed-loop transfer function would then become

zero. Hence we would need to deviate from critical damping when o = %. [25%]



(a)

(b)

Discrete-time system stability:

(i) A discrete-time system is defined to be stable if bounded inputs always
produce bounded outputs. Consequences of this are that the sum of the
magnitudes of the system impulse response coefficients should be finite and
that all poles of the system z-transfer function should lie within the unit circle
(but these are not definitions of stability). [10%]
(i) For the given system, consider a step input {u;} = {1,1,1,1,--- } which
matches the impulse response of the system. This is a bounded input. Taking

its z—transform gives
1

Vi) =1

Hence, |
-
Y(z) =G(z)U(z) = ——3
(0 =6@UE) = =7
Using the hint, y, = k for all k > 0, which is not a bounded output. Therefore,

the system is unstable. [30%]

Sums of random variables, ¥ = X| + X!

(i) HenceX;=VY-—Xj.

If X; = x1, then X3 =Y —x, where x; is a constant.

Now f(y|x;) is the pdf of ¥ at the point y, given that X = x;. Hence
this is the pdf of X; at the point (y — x7).

Hence f(ylx) = f2(y —x1) -
Using the marginal probability integral formula:

Jr(y) _/::f()"xl) fi(x1) dxy
= f:fz(y—xl)fl(xl)d—tl

= fa(xp) convolved with fi(x)

I

[20%]
i) @x(u) =)= [~ e fy(x) dx=F ()

where .Z (u) is the Fourier transform of fx (x).
Since fy(y) = fa(xz) convolved with fj(x})

Py (—u) = P, (—u) . Px, (—u)
Replacing —u by u gives @y (u) = Py, (u) . Px, () [20%)
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(iii) Whenever independent random processes are combined together in a
linear way, their pdfs are convolved together. Convolution is a tricky operator
to use, so it is easier to work with characteristic functions of pdfs where
the ®’s are multiplied together instead, and we work in the ‘u’ (negative
frequency) domain.

Characteristic functions are also useful for calculating n'™ order
moments of a given pdf by taking the n'h derivative of its ®(u) and then
setting u = (.

[20%)]
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3 (a) The PSD of an ergodic random signal is the Fourier transform of the ACF of
the signal. [10%]

(b) ryx(7) is a triangular pulse of width 27p, height P, centred on zero.
From the E&I Data Book (p 21), the Fourier transform of this ACF is

GJTo) _z2r (1 —COS((DTU])

_ s ) =
Sx (@) = P Ty sinc ( 5 T o2

(The second version is obtained from a direct FT of the triangular waveform.) [20%)

(c) For the linear system, Y (@)= H(®) X(w). Therefore, in terms of power:
¥ (@) = H(@)* X ()
Hence the output PSD is given by
. ﬂ)T{)
Sy(@) = Y (@) = |H(@) Sx () = [H(w) P Ty sinc? (T)
Alternatively this can be derived by convolution in the time domain and then by
taking the Fourier transform of the result as done in the lecture notes. [20%]
(d) From ryy(7) and ryy(t) we may use the Fourier transform to compute
Sx(®) =FT{ryx(7)} and Sy(w)=FT{ryy(7)}

Hence

_ Sy(w) , _ [Sy(w)
Z_SX(aJ) andso |H(w)|= Sx (@)

Thus we may easily compute the magnitude of H(@) but not its phase.

|H(w)|

We must also ensure that ryx(7) and ryy(7) are measured over a sufficiently long
time interval that statistical fluctuations due to the random nature of X are minimised. [30%]

(e) It can be shown that ryy(t)=ryx(7)*h(7) (convolution)
and so Syy(®) = Sy(w) H(w) where Syy(®)=FT{rxy(7)}.

Hence
_ Syy(@)

-~ Sx(o)
and both the amplitude and phase of H(®) may be obtained. [20%]

H(w)
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4 (a) For a prefix-free binary code to exist, the Kraft inequality must be satisfied:

N
Yy 27l

i=1

for N codewords of lengths /;, where i =1...N .

In the case of a Huffman code, this becomes an equality to make the code as efficient
as possible.

Code (i): ¥ ;274 =0.5+0.25+0.25+0.125 = 1.125

Hence no code exists.

Code (ii): ¥ ;274 =0.25+0.25+0.25+0.125 = 0.875

Hence a valid code exists but it could not be a Huffman code because the result is

not 1.
Code (iii): Y 274 = 0.5+0.25+0.125+0.125 = 1.0
Hence a valid code exists and it could be a Huffman code. [30%]
(b)y () Px(0)=p andso Px(l)=1-p

Therefore H(X) = h(p) , using the binary entropy function with b =2 for i
to be in units of *bits’.

Pyix(1]l)=1 andso Pyx(0[1) =0 because pmfs must sum to unity.
Similarly Py (1(0) =4 andso  Pyx(0/0) =1 .

Therefore

H(Y|X) = h(1) Px(1)+h(3) Px(0)=0.(1=p)+1.p=p

since 4(1) =0 and h(3) =1 if b=2.
p/2 0

p/2 1-p
where the two columns correspond to X = 0 and X = 1, and the two rows to

Y =0and Y = | respectively. Therefore

The joint probability matrix for (X Y) is

HXY) = —25logy(§)—(1-p) loga(1-p)
= —p logy(p)+p loga(2) — (1 — p) logy(1 —p)
= h(p)+p

Summing along the rows of the joint probability matrix above gives

Pr(0)=5+0=8 and P(1)=8+(1-p)=1-8



Therefore H(Y)=h(k).

H(X|Y) = h(0).Py(0)+h (l—féfﬁ) Py(1)
= 0+h(3%)-(1-5)
Alternatively we may obtain a simpler looking result using
H(X|Y) = H(XY) —H(¥) = h(p) + p— h(§)
Finally
I(X;Y) = H(X) — H(X|Y) = h(p) = (h(p) +p—h(§)) =h(§) —p
As a check, we can get the same result from /(Y:X) =H(Y) - H(Y|X) . [30%]
(ii) The channel is described by Py = P(Y|X) Py where

1/2 0]

PYiX) = { 1/2 1

and Py and Py are column vectors of event probabilities for X and Y. The
matrix elements are obtained from P(0|0),P(0]1),P(1]0),P(1[1) calculated
above. [15%]
(iii) The capacity of the channel is the maximum value of / (X;Y) over all
choices of Py, and hence over all choices of p. Hence at the maximum:
dI(X;Y) .oy 1
———=h x—1=0
dp (8) .3

Using the formula given for A(x) when x = p/2, we get

logz(l_p/z) = 2

p/2

2-p _ 4
p
S5p = 2
p = 04

Therefore the channel capacity is given by
Imax (X;Y) = h(p/2) — p=h(0.2) — 0.4 = 0.3219 bits per use [25%]

N G Kingsbury, June 2012.
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ENGINEERING TRIPOS  PART IIA
Tuesday 1 May 2012 9 to 10.30
Module 3F1  SIGNALS AND SYSTEMS
Short answers

1
—z+a
(b)z=0,z= 1, unstable; z= %,z= %,stable;
z= -I—:f—‘ stable; z= b 7, unstable.
(C)yk—{oioillhl)"‘};
ye=0fork=0,1, ye=2(1—k)(1/2)* " fork>2;
ye=0fork=0,1, y=(1/v2)f3sin(F(k—1))fork>2.

L. ()2

d) () 5————:
e -
(0<K<l; —i<k<3; -l<kK<} -2<K<-1; No.

2. A friy) = /:ofg(y—xl) fi(xy) dx (convolution)
(it) ‘I’Y(MJ = (sz (u) q)Xl (u)

3. (b) Sx(w) =P Ty sinc> (m—;{l) - T:: (1_—‘”;#’_@)
(©) Sy () = |H(0)]? P T sinc? (“’TTO)
@) |H(w)| = g;tz%
(&) H(®) = ngf(g)

4. (a) (i) no, yes, yes; (ii) Huffman only for third code.

) () H(X)=h(p); H(Y|X)=p; HXY)=h(p)+p; HY)=h(p/2);
HX|Y) =h(325)- (1-§) = h(p) +p—h(p/2)
I(X;Y)=h(p/2)—p

(iii) pmax = 0.4; Imax(X;Y) = 0.3219 bit per use.






