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Engineering Tripos Part ITA THIRD YEAR

Module 3G4: Medical Imaging & 3D Computer Graphics
Solutions to 2012 Tripos Paper

1. Ultrasound imaging

(a) (i) For the interface between water and fat
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(b) (i) For path A. The attenuation in 20 cm of water at 7 MHz will reduce the intensity by a
factor k£ where —0.0022 x 7 x 20 = 10log;,(k) which gives us k = 0.9315. The reflection
by the fat-water interface reduces the intensity by a factor of 1.736 x 103, Travelling back
through 20 cm of water reduces the intensity by 0.9315 again. This means that the overall
proportion of the initial intensity that reaches the probe having been back-scattered by the
water-fat interface is 1.5 x 1072,

(ii) For path B. This time we need the ultrasound intensity transmission coefficient between
water and liver 4% 15 x 169
x 1.5 x 1.
Ty = ———r = 0.996452
w15 + 1.69)2
The attenuation in 10 cm of liver at 7 MHz will reduce the intensity by a factor k& where

—0.7 x 7 x 10 = 10log,,(k) which gives us k = 1.2589 x 107°.
So we have the following attenuation factors along path B.
attenuation by 10 cm of water at 7 MHz 0.965161
transmission through water-liver interface ~ 0.996452
attenuation through 10 cm of liver at 7MHz  1.2589 X 1073
reflection at liver—fat interface 10.196 x 1073
back through the liver 1.2589 x 107°
back through water-liver interface 0.996452
back through the 10 cm of water 0.965161
Multiplying all the numbers in the right-hand column together gives the total attenuation
along path B as 1.495 x 107" [40%]

(¢) (i) The sound will travel slower than assumed by the calibration of the ultrasound
machine by a factor of 1540,/1498 = 1.028 therefore the distance to the water-fat interface
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will be displayed too large by this factor by the ultrasound machine. The perceived depth
is thus 20.56 cm.

(ii) For path B, the depth of the 10 cm in the water will be displayed as too big by the same
factor as in the previous part, giving 10.28cm. However, as ultrasound travels faster than
1540 ms ™! in liver, this will appear too small by a factor of 1540/1604 = 0.96. Hence this
will appear to be 9.6 cm. The total depth to the liver-fat interface will thus be perceived as
19.88 ¢cm.

Assessors’ remarks: This question tested the candidates’ understanding of attenuation
and sound speed in ultrasonic imaging. It was relatively straightforward, but not easier
that the norm in previous years. It was very popular and most candidates answered it
extremely well. Many candidates got the correct numerical answer to the involved atten-
uation calculation in (b)(ii). In the sound speed calculations (c), there was an even higher
proportion of correct answers.

. X-ray computed tomography
(a)
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X-rays are generated by bombarding a tungsten target (anode) with electrons. The cathode
is heated by a high current (typically 10V, 10A), is incandescent at 2200° and emits elec-
trons by thermionic emission. Electrons are repelled by the negative cathode and attracted
by the anode some 50-125 KV more positive. The electrons accelerate in a vacuum and
hit the cathode at half the speed of light. The tube current is controlled by the filament
heating voltage. Less that 1% of the electron energy goes into the X-rays. The rest heats
the tungsten anode which has a high melting point and good thermal conduectivity to con-
duct the heat away efficiently. The anode also rotates to give each point of electron impact
time to cool.

(b) Three properties of X-rays that can be used to detect them: they can ionise matter, they
make some materials fluoresce, and they affect photographic emulsion,

(¢) Derivation of filtered backprojection trom the projection theorem.

[30%)

(30%]

[15%]



We need to find a way of inverting the Radon transform:
wz,y) = R [p(s, )]

p(z,y) The X-ray attenuation values of the
object that we want to reconstruct.

R! The inverse Radon transform

p(s, ) Projection values (from the CT machine).

The projection theorem states that the 1D Fourier transform (F; @[ ]) of the projection data
ps(s) at a given projection angle ¢ is the same as the radial data passing through the origin
at a given angle ¢ in the 2D Fourier transform (F] ) of the attenuation data w(z,y).

Fitw) [pe) = F (1]

Take the inverse 2D Fourier transform of both sides:
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Next , we use a Jacobian to rewrite the integral in terms of polar (w, ¢) instead of rectan-
gular (w,,w,) coordinates in the spatial frequency domain:

Wy = WCOSQ, Wy=wsing

Oy /O Owy/Od |
By /0w Oy 00 |~

cos¢p —wsing
singg weoso

/-]

Hence:
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The inner integral is a one-dimensional inverse Fourier transform in the s direction at
constant ¢»;
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Multiplication in the frequency domain is equivalent to convolution in the spatial domain,

50
Fiw) [ps(s)] X [w| € ps(s) % a(s)



where ¢(s) is the inverse Fourier transform of |w|:
+oo
a(s) = Figy loll = [ loledes

Hence:

@) = [ pals) sale) ds

The above equation is the essence of the filtered backprojection algorithm, which is best
understood by considering a practical implementation where the integral is replaced by a
finite summation:

e ) sl

=0
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1 Take n projections p,(s) of the object.
2 Convolve each projection with g(s).

3 Backproject each filtered projection in the [ direction.

4 Accumulate the backprojections. [35%]

(d) The filter kernel q(s) is divergent in frequency and therefore unattainable in practice.
However, the X-ray beam has a finite width ¢, which means that the useful Fourier content
is limited to frequencies below wmax = 2m/t. The filter can therefore be cut off at w =
wmax. The resulting filter, shown below, is called the Ram-Lak filter after its inventors

Ramachandran and Lakshiminarayanan.
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Often, frequencies just below wmax are unreliable because of aliasing and noise, so a
smoothing window (e.g. Hamming) is applied to the Ram-Lak filter.

Assessors’ remarks: This question tested the candidates’ knowledge of X-ray computed
tomography. It was a straightforward question in which success was to a large extent
dependent on an ability to reproduce book work from the lecture notes. It was unpopular
and those candidates who did attempt it generally produced poor solutions.

. Parametric cubic curves and continuity

(2) A Bézier curve is defined by four control points, two of which define the ends of
the curve and the other two define the end gradients. It is fairly easy to create a single
curve segment, but only provides continuity between segments if neighbouring points are
carefully aligned. It can easily be sub-divided, which makes it easy to refine a pre-existing
curve. It is also useful for display, since the curve is within the convex hull of the control
points, so if a polygon formed from the control points is outside the visible area, the curve
does not need to be drawn. It can also be efficiently displayed by iterative sub-division and
then joining up the resulting control points.

A Catmull-Rom curve will always pass through the control points, and a multiple segment
curve inherently has first order continuity. Hence it is easy to define a line which is fairly
smooth and passes through defined points. However, it does not have the same convex
hull property as the Bézier nor can easily be sub-divided, so conversion is probably neces-
sary before refinement or display. However, the multi-segment nature means moving one
control point still results in the same continuity.

A B-spline curve does not pass through control points, but it does pass quite close to them
and exhibits second order continuity. So it is a good choice when defining a smooth curve
if it is not critical exactly where the curve is located. It does have the convex hull property,
s0 can be displayed according to whether the control point polygon is visible or not. Again,
it is probably easier to convert to a Bézier for curve refinement, although like the Catmull-
Rom the control points can easily be moved without changing the overall continuity.

[20%]

[30%]



(b) Continuity between curve segments of a Bézier curve is only achieved by careful
matching of neighbouring control points. Sharing (for instance) p, gives zeroth order
parametric and geometric continuity, Having the neighbouring control points (p, and p;)
in a straight line through p, gives first order continuity, which is parametric if p, is in the
centre of this line.

JTe

The Catmull-Rom curve has inherent first order geomelric continuity, due to the sharing of
three control points with neighbouring curve segments. This is unless there are coincident
control points, in which case geometric continuity can be reduced to zeroth order.

The B-spline has inherent second order geometric continuity, again due to sharing of con-
trol points between segments. As with the Catmull-Rom, geometric continuity can be
reduced if control points are coincident. [15%]

(¢) (i) The curve is defined as a Catmull-Rom so we already know it has at least first order
continuity. For second order continuity we need the second derivative of the curve:
-1 3 -3 1 P
2 -5 4 -1 P,
-1 0 1 0 P
0 2 0 0 P,

é[ﬁt 20 0]
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For the end of the first curve segment at p,, we use ¢ = 1 and the points p, ... p; Which
gives the second derivative as:

—p, +4py — 5pg + 2py

For the start of the second curve segment at ps, we use ¢ = 0 and the points p, . .. p; which
gives the second derivative as:

2p, — 5py + 4Py — Ps
Equating these two gives the condition as:

P, —2py+2p,—p; =0 [20%]

(ii) Defining these vectors gives:

a = p;— M
b = p;—ps
= Py — P2

Substituting these into the condition from (i) gives:
c=a+b

Hence we need to manipulate p, and p; whilst keeping a, b and ¢ forming a triangle
between them.

manipulate this point j

The diagram above shows a potential way to do this by just moving a single point. This
will ensure that the curve still interpolates the three points p, . . . py with continuity in the
second derivative. [20%]

(iiii) For a three-segment spline, there would be the same condition on p; and p5: however
p; would then be the last point to be interpolated, and hence fixed. This implies that p,
would also be fixed. By a similar argument, the location of p, also fixes the location of the
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new point p;. Hence it is possible to interpolate four points with continuity in the second
derivative, however, there is no longer any flexibility in the location of the extreme control
points p, and pg, and as a result only one possible curve.

Assessors’ remarks: This question concerned the differences between Bezier, B-spline
and Catmull-Rom curves, particularly regarding continuity. This was a fairly popular ques-
tion with generally good answers to the background material in (a) and (b). Answers to
(c) were much more variable. There were some perfect solutions, but many students lost
marks due to mistakes in arithmetic as opposed to technique. There were also several
attempts to preserve the continuity of the control points rather than the actual curve.

. Marching cubes, distance transforms and linear interpolation

(a) The Marching Cubes technique works by considering a single cube of the data at a
time, with one data sample at each cube vertex, giving eight data points in all. A trian-
gulated surface is constructed for each of these cubes, which completely separates cube
vertices with data above the iso-surface threshold from cube vertices with data below the
iso-surface threshold. This operation is repeated by ‘marching’ the cube over the entire
data volume, and generating these surface patches for every cube in the volume. The total
set of surface patches is the triangulated iso-surface for the whole volume.

At each cube, the surface is designed by noting which cube vertices have data above or
below the threshold. This gives 256 possible cases, which can be reduced to 15 by consid-
ering symmetry. A look-up table is constructed for these 15 cases which stores the number
and arrangement of triangles to use for this case, and which cube edges the triangle vertices
should be placed on.

The final step is to work out exactly where on the cube edge each vertex should be placed.
This is done by linear interpolation of the data values at each end of this edge: by definition
these will always be either side of the iso-surtace threshold, since otherwise there would
not be a triangle vertex at this edge. For instance, if the data values are 1 and 5, and the
threshold was at 3, the vertex would be placed exactly half way along the edge.

i ?xl.il;u
i spucing
B i 1mm

(b) (i) The diagram above shows the intersection of the surface as a solid line. Marching
Cubes involves linear interpolation of the data values: on the left this will give the threshold
value of 50 half way between the lower and upper layers. Triangles tend to be similar in
size to the ‘cubes’, which in this case are 3 mm high but only 0.5 mm wide. So triangles
on the vertical surfaces will be very long with poor aspect ratio, whereas triangles on the
horizontal surfaces will tend to be smaller and more regular.

intersection
plane
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(ii) As the diagram above shows, linear interpolation makes no difference to the actual
surface location: Marching Cubes was already using linear interpolation in (i). However,
the addition of some intermediate surfaces means that the voxels are now genuinely cubes,
and hence all the triangles will now have similar sizes.

intersection!
plane

Ay

(iii) Distance transformation replaces data values with the distance to the edges, and this
will result in the much more plausible surface intersection shown above. However, we are
still using very stretched ‘cubes’ for Marching Cubes, so the triangle size will vary. On
the vertical surface there are still very long triangles, whereas the other surface has slightly
extended triangles (due to the slope).

intersection |
plane
& i
\ A : slice
i spacing
3 mm

(iv) This scheme combines the benefit of correct surface location in (iii) with the creation
of sensible size triangles as in (ii), this time across the entire surface. [40%]

(¢) Surfaces created by Marching Cubes tend to contain a lot of very small triangles, all
of a similar size to the dimensions of each cube used in the technique. In areas where the
iso-surface is quite flat there is no need to have so many triangles, hence the surface mesh
is often processed to reduce the number of triangles in these regions. Such techniques
seek to iteratively remove vertices (and then re-triangulate the resulting holes) where the



removal has little impact on surface accuracy. This results in much bigger triangles over
flat regions, but smaller triangles over more curved regions.

Marching Cubes also generates some triangles with very poor aspect ratios, which can
cause problems when visualising the iso-surface. These can also be removed by post-
processing with techniques as outlined above.

(d) The answer to (b) (iii) would actually be identical: blurring extends the sharp discon-
tinuity in both directions, but the centre of the discontinuity remains in the same location.
Since we are thresholding at 50, which is at the exact centre of the edge, the threshold lo-
cation stays in the same place. After thresholding we then throw away all the other blurred
data and replace it with the same distance transform as before.

intersection
plane

On the other hand, the answer to (b) (i) is affected by image blurring, creating the slightly
softer surface intersection shown in the diagram above. The actual form of this intersection
will depend on the extent of the blur compared to the size of the surface feature.

Assessors’ remarks: This question concerned the extraction of isosurfaces from volume
data. The background material in (a) and (c) was answered very well. There were some
excellent answers to (b), though some confusion about the difference between using a
distance transform and simple thresholding. Several students spotted in (d) that blurring
does not have any significant effect if it is followed by thresholding.

. The Phong model and surface rendering

(a) I, is the intensity of the reflected light of colour \, where A € {r, g, b} for red, green
and blue.

I, depends on several terms. First, there is the ambient reflection term, ¢)l,k,, which
models indirect illumination of the surface. ¢, where 0 < ¢, < 1, specifies the colour
of the surface. I, is the intensity of the general background illumination, and &, is the
surface’s ambient reflection coefficient.

The next two terms in the model are calculated for a point light with intensity I,. First there
is the diffuse reflection term, c;k4L.N, which models even reflection of the light source in
all directions. Diffuse reflection is greatest when the surface is pointing directly towards
the light source, and tails away to zero when the surface is side-on to the light source. L is
the unit vector from the surface point towards the light source, N is the unit surface normal
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and k, is the surface’s diffuse reflection coefficient (small for dark surfaces, high for bright
surfaces).

Finally, there is the specular reflection term, k; (R.V)", which models directional reflec-
tion of the light source along the unit mirror vector R. V is the unit vector from the surface
point towards the viewer. The viewer only perceives the specular highlight (or glint) when
looking along the mirror direction, or at least close to it. k; is the surface’s specular reflec-
tion coefficient (small for matte surfaces, high for shiny surfaces), and n is the specular
exponent that determines the tightness of the glint. n is high for a tight highlight (e.g. a
perfect mirror) and small for a more blurred highlight (e.g. aluminium).

The model can be extended to incorporate multiple light sources ¢, depth cueing and shad-
ows as follows:

Iy = ealoka+ Y Sifudpi{erakali N + ks (Ri.V)™) .

The diffuse and specular terms are attenuated by a shadow factor S;, where 0 < S; < 1.
S, is the fraction of the pixel shaded from the light source, often calculated using a shadow
Z-buffer algorithm. There is also a depth attenuation factor fu, usually of the form

1
— 1 B 1
fall min (al T a2d T a3d2 ’ )

where a1, a; and a3 are constants, and d is the distance from the light source to the surface
point. The depth cueing ensures that surfaces with the same orientation, but at different
distances from the viewer, are not assigned the same intensity.

(b) Calculating R involves considerable computational expense. The advantage of the
N.H alternative (which produces very similar specular highlights) becomes apparent when
the light source and viewer are both at infinity. Under these conditions, L, V and H are
constant across the scene. So calculating the specular component requires only a single
dot product N.H for each vertex.

(¢) (i) The rendering on the left uses flat shading and, conceivably, orthographic projection.
The alternative would be perspective projection with almost parallel projectors, consistent
with a distant target and a long focal length. The rendering in the middle uses the same
projection and Gouraud shading. The rendering on the right uses Gouraud shading and
perspective projection: there is significant perspective compression from the front to the
back of the ‘O’.

(ii) All three renderings suffer from:

Lack of self-shadowing. Given the position of the light source, the interior of the ‘O’
should be entirely in shadow. This could be fixed using an extended Phong model, as
in (a), in conjunction with a shadow z-buffer algorithm.
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Saturation. The specular highlights are saturated white and bleed into the background.
This could be fixed by reducing the illumination intensity to ensure that no Phong
calculations saturate.

Uniformly shaded side surfaces. The side surfaces are illuminated entirely by the Phong
ambient term and therefore appear unconvincingly flat. This could be fixed by adding
another light source so that every polygon reflects some diffuse illumination.

Jagged edges. Close inspection of the renderings shows that the jagged edges have noth-
ing to do with the underlying polygon structure of the ‘O’, so increasing the number
of polygons will not help. What we are seeing are individual pixels in the framebuffer.
The simplest way to anti-alias the renderings is through supersampling or postfilter-
ing. This involves rendering the image into an intermediate framebuffer at several
times the display resolution. The supersampled image is then low-pass filtered at
the Nyquist limit of the final display framebuffer, which is filled by subsampling the
intermediate framebuffer.

Assessors’ remarks: This question assessed the candidates’ understanding of the Phong
model and its use in rendering algorithms. Part (a) was book work and was very well
answered by almost all the candidates. In (b), most candidates stated that using the halfway
vector would be quicker, but very few explained that this would only work when the light
source and viewer were at infinity. In (c)(i), most were able to explain why the renderings
differed but nobody identified all the artefacts in (c)(ii). It was pleasing, however, to see
several candidates correctly attributing the jagged edges to rasterization as opposed to
polygons, and suggesting appropriate anti-aliasing remedies.

. Clipping, hidden surface removal and surface rendering

(a)
Local ! World ; View ¢ 3D screen 2D device
coordinates coordinates coordinates coordinates : coordinates (pixels)
Rasterization
Object Compos.e e I Cull polygons Clip to view | : Hidden saLtr(f)ace
definition Define viewpoint [— Define 3D view —* volime ™1 removal
Define lighting volume ] : ;
t . : Shadmg

(1) ' @ ' (3) ' @ (5)

(b) (i) It is important that the mapping takes this form, since it means that the transforma-
tion between view and 3D screen coordinates is a projective one. This, in turn, guarantees
that lines map to lines and planes map to planes, which is essential if we are to usc any sort
of linear interpolation at later stages of the rendering pipeline. 4 x 4 matrix operations are
ubiquitous in computer graphics and widely supported in hardware.

(ii) Clipping to the view volume can be performed in homogeneous coordinates, so the ex-
pensive divide-by-w operation is necessary only for those vertices that survive the clipping
process. Further vertices may have been discarded even eatlier by back-face culling.
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(iii)
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Candidates are expected to produce just a single, representative curve. Here we show
curves for f = 100 and n € {1, 10}, to illustrate answers to (c) and (d).

(c) With reference to the curves in (b), depth discrimination becomes more problematic
near the far clipping plane, where a larger range of z, values map to similar z, values. So
we should look at the values z, = 1 and z, = 1 — 27! + ¢ (where € is vanishingly small),
since these will both be stored as 216 in the hardware z-buffer. z; = 1 clearly maps to
z, = —100, and

gt6 _ fA+n/z) 1000 +1/2) 69849
f —_n 99

The maximum diffcrence between the two z, values is therefore 100 — 99.849 = 0.151.

z2s=1—

(d) We could increase the resolution of the z-buffer beyond 16 bits, but this would require
hardware modifications. A far simpler fix would be to increase 7, since it is the ratio of
f/n that determines the amount of perspective compression. For example, increasing n
from 1 to 10 (see graph in (b)) improves matters considerably: the answer to (c) becomes
0.0137. The only side effect would be nearby objects disappearing behind the camera (or,
to be precise, behind the near clipping plane) a little sooner.

Assessors’ remarks: This question assessed the candidates’ understanding of the various
coordinate systems used in the surface rendering pipeline, particularly 3D screen coordi-
nates and their role in clipping and hidden surface removal. Part (a) was book work and
was very well answered by almost all the candidates. In (b), most showed a solid under-
standing of clipping though several thought that vertices might be clipped because they
were obscured by other polygons, not because they were outside the view volume. Many
candidates performed the calculations correctly in (c) and got full marks, most of the oth-
ers at least appreciated that the issues would be at the far clipping plane. In (d), most
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candidates made sensible suggestions involving the z-buffer precision and/or the clipping
plane positions, though most missed the pertinent point that it is the ratio f/n that matters
most.

Andrew Gee, Richard Prager & Graham Treece
May 2012
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Part ITA 2012
Module 3G4: Medical Imaging & 3D Computer Graphics
Numerical Answers

1. (a) (i) 1.763 x 1073, (ii) 10.196 x 107*

- (a) ()
(b) (i) 1.5 x 1073, (ii) 1.495 x 1072
(c) (i) 20.56 cm, (i) 19.88cm
A [ 1

)
6. (c) 0.151






