ENGINEERING TRIPOS PART IIA

Thursday 26 April 2012 9.00 to 12.00

Module 3A1

FLUID MECHANICS I

Answer not more than five questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.
Attachments:
e 3Al Data Sheet for Applications to External Flows (2 pages);
e Boundary Layer Theory Data Card (1 page);

e Incompressible Flow Data Card (2 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 (a) (i) Prove that the complex potential

2
F(z)=U (z+ gz—)

where z=x+iy, describes an inviscid flow with upstream velocity U around
a cylinder of radius @ located at the origin. [10%)]

(ii) Show that the tangential velocity component, ug , on the cylinder
surface is related to the cartesian components (u, v) by
ug = ie® (u—iv),
where 0 is the polar angle measured anticlockwise from the x-axis. Hence,
or otherwise, find an expression for ug . [10%]

(iii) A real fluid flow past a cylinder typically exhibits large-scale separation.
What feature of the potential-flow solution suggests that such separation is to
be expected? [10%]

(b)  An engineer surmises that the separation may be eliminated by sucking fluid
into a narrow pipe placed behind the cylinder on the x-axis. The pipe is represented by a
line sink of strength m at a distance b from the origin. The sink and its associated images

are shown in Fig. 1.
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Fig. 1
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3

(i)  Show that the proposed image system maintains the cylinder surface as
a streamline. [20%]
(ii) Find the additional surface velocity due to the presence of the suction
pipe. [20%]

(iii) Comment on the likely success, or otherwise, of the engineer’s idea. [15%]

(c) Discuss, qualitatively, alternative suction locations and their advantages or

disadvantages relative to the configuration in (b). [15%]
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2 The complex variable { =& +in is defined in terms of z=x+1iy by the mapping

a2

C=z+—,
z

where a 1s a constant.

(a) Show that the circle z=R eiP , with R > a, maps on to the ellipse

rg'2 ”2 i
b2 b}
State explicitly the expressions for by and by . [20%]

(b) An inviscid fluid, with upstream velocity U in the x-direction, flows around
the ellipse defined in (a). The flow speed on the surface of the ellipse is denoted by g.
Find ¢%, in terms of U, a, R and . You may assume without proof that the complex
potential for the corresponding flow around the cylinder in the z-planeis Uf(z +R%/7).  [40%]

(¢) Inareal flow, ¢ represents the flow speed outside a surface boundary layer.
The initial, laminar, development of the boundary layer can be calculated using Thwaites’

method, according to which the momentum thickness 6 is given by
045V S / 5 !
66)P = | lasas’
[q(s)]® Jo

where v is the fluid’s kinematic viscosity and s the distance around the ellipse from the

front stagnation point. [40%]

(i) By writing B =m—¢ , with & <1, find the leading-order
approximations for s and ¢ .

(i) Hence find an expression for 02 in the region of the front stagnation
point.

(iiiy Comment briefly on any notable features of your expression.
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3 (a) Show that a three-dimensional doublet, with strength i = 21a’U |, located
at x=xg,y=0,z=0 can be used to represent the potential flow around a sphere of
radius a , centred at that location and moving with speed U in the x-direction through a
stationary fluid.

(b) Consider the case where U is a constant, independent of time.

(i)  Explain carefully why the flow field is unsteady in the absolute frame.

(ii) Find an expression for the surface pressure field in terms of U, a,the
angle 0 from the doublet axis, and the pressure pg at 6 =0 . You may
ignore the gravitational component.

(iii) Comment on the fore-aft symmetry of the pressure field, and hence on
the associated horizontal force.

(c) The sphere speed U now varies with time.
(i) Find the additional pressure-field component that is due to the
unsteadiness in U .
(i) What is the associated horizontal force on the sphere?

(iii) How would you interpret this force in terms of an effective modification

of a physical property of the sphere?
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4 Figure 2 shows the development of a laminar boundary layer along a flat plate,
where & is the thickness of the boundary layer, L the length of developmentand U the
freestream velocity. We consider here steady high Reynolds number flows.

U

Fig. 2

(a) How does the magnitude of § compare qualitatively to L ?

(b)  Within the boundary layer, what are the orders of magnitude of the x-velocity

component u and its derivatives du/dx and du/dy ? Explain your reasoning.

(c) Consider the continuity equation for the boundary layer. Deduce the order of

magnitude of the y-velocity component v .

(d) Consider the y-direction momentum equation. Use Prandtl’s order of
magnitude argument to deduce an equation for the pressure. Hence explain why the
inviscid flow theory is successful in predicting the lift force on an airfoil.

(e) Apply Prandtl’s order of magnitude argument to the x-direction momentum

equation for the boundary layer. Explain carefully why

o) 1 UL
—~4/5= Re=—,
L Re %

where v is the kinematic viscosity of the fluid. Deduce the approximate momentum

equation for the boundary layer.
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5 (a) Thwaites defined two dimensionless parameters [ and m for laminar

boundary layers, such that

j 0 (814) 0 T " 62 (Bzat)
= — | = pmi——— e g— ___2_
Ul\dy/,, Uwu U \ dy .
where U = U(x) is the freestream velocity, u the fluid’s dynamic viscosity, T, the
wall shear stress and O the momentum thickness of the boundary layer.

(i) Show that [20%)]

02 dU

m——'___—_—

v dx
where v is the fluid’s kinematic viscosity.

(ii) Use the momentum integral equation to deduce [20%]
2
Ud—(ci—) =2v[(H +2)m+1]

where H is the shape factor.

(iii) Assuming that
2[(H+2)m+1] =0.45+6m ,

deduce that

563 = G o Y

where x is the location of interest. You may assume that either U(0) = 0 or
6(0) =0. [20%]

(b) (i) Consider a linearly decelerating flow with a freestream distribution
U ="0o(1-7)
(x =up I 3

where L and Uy are constants. Use the above formulae to calculate 6 and
m. [20%]

(i) Assuming that the separation point is given by m =0.09 , find its
location and the pressure coefficient there, using the pressure and velocity

at x = 0 as the reference quantities. (20%]
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6 (a) Consider classical two-dimensional thin aerofoil theory. A camber line is

given by . . r
o=t (1-3) (K=3)

where ¢ is the chord length, & and K are constants. Calculate the g coefficients as
defined in the 3A1 Data Sheet for Applications to External Flows.

(b) Hence find an expression for the local aerofoil loading (defined as the local
pressure coefficient difference between the lower and upper surfaces of the aerofoil) at

zero incidence.

(c) From your expression in (b) identify the singular (flat-plate-like) contribution
to the loading. Sketch this and the remainder (for K = 1) on a plot of pressure coefficient
Cp versus x/c. Also sketch a typical contribution to the distribution from the thickness.
Show how the overall pressure coefficient distribution is derived.

(d) Find the value of K such that the maximum load due to the finite camber

component is at the aerofoil quarter-chord point.
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7 (a) Consider two-dimensional aerofoil flow and write brief notes accompanied by

appropriate sketches on the following topics :
(i)  boundary layers and separation;
(ii) separation bubbles;
(1ii) stall mechanisms;

(iv) remedial measures for stall.

(b) Consider now three-dimensional wings and write brief notes accompanied by

appropriate sketches on the following topics :

(i) the role of the spanwise wing loading distribution on stalling behaviour;

(ii) boundary layer cross-flow on swept wings and the impact on stall.
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8 Figure 3 shows the outline of a saloon car.

(a) Sketch the approximate distribution of the surface pressure coefficient along
the centre-line running from A to B along the upper surface. Make sure you identify the

key points.

(b) Highlight possible areas of flow separation and comment on their significance

to drag generation.

() Suggest modifications to the body shape between A and B to address the
problems identified in (b).

(d) Apart from the upper surface, make two additional suggestions for reducing

the aerodynamic drag and explain briefly why they might be effective.

Fig. 3

END OF PAPER
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3A1 Data Sheet for Applications to External Flows
Aerodynamic Coefficients

For a flow with free-stream density, p, velocity U and pressure pe,

Pressure coefficient: c, = ll’ -p :
7PU

_Lft(N/m) o = drag (N /m)

, (section chord ¢
T ‘

Section lift and drag coefficients: c,

_Lft@y) - _ drag (V)

: > Cp=7 . (wing area S)

Wing lift and drag coefficients:  C;

Thin Aerofoil Theory
Geometry Approximate representation
Ay Ay
y=Jyc (x) }’(X) X
A X _________
---------- A iy P
o (I: }[;/ A
U
Pressure coefficient: c, =xy/U
Pitching moment coefficient: ¢, =(momentabout x = 0)/ L pU*c?
Coordinate transformation: x=c(l+cos@)/2 = ccos?(6/2)
Incidence solution: y ==-2Ua ! __COSS , ¢, =2na, ¢, =c /4
sinf
: 1-cosf :
Camber solution: y=-U|gyg— + E g, sinn0 |{, where
sin@ o

T

—2ﬁ‘— do, g, =£f —2% cosnBdo
dx T dx

g 7 g ¢ =«
G =”(g0 +_l_)’ Chm ='4_(g0 +8) +72)=j+§(g1 +g,)



Glauert Integral

j. cos ng d sin nf

T—
cos ¢ — cos ¢ sinf
a

Line Vortices

A straight element of circulation I induces a
velocity at P of

r
——(cosa + cos
4d ( P

perpendicular to the plane containing P and
the element.

— (B

r
Lifting-Line Theory
Spanwise circulation distribution: ﬁrm\
= f 5 y
Aspect ratio: Ap =4s*/S
S
Wing lift: L= prl"(y)dy
-8
1 pdl(n)/dn
Downwash angle: a,(y)= 4JEU'_’:. - dn
[nduced drag: D, = pU fl"( ye, (y)dy
Fourier series for circulation: C(y)=Us Y G,sinnf, with y = -scos@
nodd

Relation between lift and induced drag:

72 G G 2
Co =(1+5)%,whereé=3(c;] +5(GSJ +...

i




3A1 Data Sheet for Applications to External Flows

Aerodynamic Coefficients

For a flow with free-stream density, p, velocity U and pressure pe,

Pressure coefficient:

Section lift and drag coefficients:

Wing lift and drag coefficients:

Geometry

‘‘‘‘‘‘‘‘‘

C
U

Pressure coefficient:

Pitching moment coefficient:

Coordinate transformation:

Incidence solution:

Camber solution:

P~ Px
Co ™7 12
¢, = lift (N__’: m) , Cy= ______dr.':tg (N_:! ) (section chord ¢)
spU’c spU%
ift (N drag (N :
C; = }1ft(2) s lag(z ) (wing area S)
—pU~S —pU*S
2 2
Thin Aerofoil Theory

Approximate representation

Ay

¥ (%) %

2 |

C

cp, =xy/U
¢, =(moment about x = 0)/ pU’¢c”

x=c(l+cosf)/2= ccos?(6/2)

Yy = —2U051—.COSBS ¢ =2na, ¢, = 61/4

sin 0

1-cosf A
y=-U|go— +2 g,sinn@ |, where

sinf Lt

1" dy, 2% dy,
=—fl-2==1d6, g, =—[|-2—"|cosnOdo
N L]

g i 5% c T

C/=ﬂ(go+7ls n1=Z(g0+gl 72)=j+§(g|+g2)



Glauert Integral

f cos ng d =,,;Sifm9
cos ¢ —cos 6 sin@

aQ

Line Vortices

A straight element of circulation T induces a
velocity at P of

r
 — + COS
- (cosa B)

perpendicular to the plane containing P and
the element.

> (B

r
Lifting-Line Theory
Spanwise circulation distribution: ﬁrm\
-s ' g =
Aspect ratio: Ap = 45218
A
Wing lift: L=pU fr( y)dy
-5
L pdl(m)/dn
Downwash angle: a = d
g ) 4:;{;-_[ ek
Induced drag: D, = pU f C(y)a,(y)dy
Fourier series for circulation: ['(y)=Us Y G,sinnB, with y = —scost
nodd

Relation between lift and induced drag:
2 2
: G
C, =(1+0) €, .where§ =3[ —=| +5—=| +...
MR GI




Module 3A1
Boundary Layer Theory Data Card

Displacement thickness;

o6 u
e[ ()
0 u,) Y
Momentum thickness;
o (U —=u)u /m ( u ) u
= L S A TR 1 —— ) —d
4 /0 Ut Y= 1 U,/ Uy v

Energy thickness;

w (U —u?)u % ( u )2 w
= — s W= =i —d
op f) 3 dy fo 1 U, U, Y

( 1

5w
H=7

Prandtl’s boundary layer equations (laminar flow);

ou  Ou ldp, O%u
Yoz TVay = Tpdz Vo
dr Oy

von Karman momentum integral equation;

) H+2,d0, 1 _C;

dz T U, dxz pUZ 2

Boundary layer equations for turbulent flow;

_ou _0ou —1ldp Ou 2%
Yor "oy T par oy o
@_1_@ = ()
ox Oy



Module 3A1: Fluid Mechanics I

INCOMPRESSIBLE FLOW DATA CARD

Continuity equation V-u=0

D
Momentum equation (inviscid) o) 7)% =-Vp+pg

D|Dt denotes the material derivative, ot +u-V

Vorticity @ =curl u
- P F D
Vorticity equation (inviscid) 7(;, =w-Vu

: 5 . .. Dr
Kelvin's circulation theorem (inviscid) = 0, I'= fu -dl = f o -dS

For an irrotational flow

velocity potential ¢ u=V¢ and V¢ =0

Bernoulli's equation for inviscid flow: £ +Lluf* + gz + % = constant throughout flow field
p

TWO-DIMENSIONAL FLOW

Streamfunction 3 . Iy . ay
dy’ ox
X 9
" rof’ i ar
Lift force Lift / unit length = pU(-I")

For an irrotational flow

complex potential F(z) F(z) = ¢+ iy is a function of z = x +iy



TWO-DIMENSIONAL FLOW (continued)

Summary of simple 2 - D flow fields

¢ Y F(z) u
Uniform flow (x - wise) Ux Uy Uz u=U,v=0
. m m m m
Source at origin —1In —0 —Inz U =—m.,uy, =
S 2 2 2 darib bl
Doublet (x - wise) at origin LSS Fsing ot = s COSZH Uy = (Eing
2mr 2mr 2nz 2 27r?
1y
Vortex at origin LB —Llnr —-l—lnz u =0,u, = L
27 2w 2 2ar
THREE-DIMENSIONAL FLOW
Summary of simple 3 - D flow fields
] u
m m
Source at origin - u =—-s, U =0, u,=0
5 Anr T 4t v
Doublet at origin (with 6 the _ pcosb 4 = ucosf _ usinf u =0
angle from the doublet axis) 4nr? T 2w 4mr® " Y
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