ENGINEERING TRIPOS PART IIA

Monday 30 April 2012  2:30 to 4:00

Module 3A6

HEAT AND MASS TRANSFER

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Attachments: Data sheet (1 page).
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1 (a) A solid has density p, specific heat capacity c, and thermal conductivity
A, which are independent of temperature T . For a cartesian coordinate system, the
energy balance within a differential volume AV = Ax Ay Az in the solid is given by the
expression
aT
chAV =AQ

where AQ is the net rate of heat transfer into the element. By considering the heat transfer
by conduction in one direction only, then proceeding by analogy, show that the unsteady
heat diffusion equation within the solid can be written as
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(b) Consider now a one-dimensional situation for a semi-infinite solid extending
from x = 0 into the x-coordinate.The solid is initially in thermal equilibrium with its
surroundings at a temperature 7., . At atime ¢ = 0, the surface of the solid is exposed
to a sudden change in boundary condition. For each of the three cases below, sketch the
temperature variation with depth into the surface, indicating how it changes with time

after its boundary at x = 0 is subjected to:

(i) aconstant temperature, 7 > Too ;
(i1) a constant positive heat flux, ¢ ;

(iii) a convective heat flux with constant heat transfer coefficient, 4 , and far
field fluid temperature, Ty > Teo.

Indicate clearly the boundary conditions used at the interface of solid and surroundings.
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3

(c) When the surface is exposed to the sudden constant temperature boundary
condition of part (b) (i), the temperature is given by

=il

where 11 = and erf is the error function.

x
2Vt
(i) For a case where Too = 300K and Ty = 350K, the temperature
at a depth 0.005m below the surface reaches 310K at 60 seconds.
The material has density p = 1320 kg m~3 and specific heat capacity
c = 2160Jkg ~! K =1 Using the result above, calculate the thermal
conductivity of the material. Values for the error function are given in Table 1. [30%]

(ii) Assuming Tp > Tw, if the surface were exposed to a convective
boundary condition instead, would the temperature at the same location be
higher or lower at 60 seconds? Comment on the practical realisability of the
boundary conditions suggested in cases (b) (i) and (iii). [10%]

(d) By considering an approximate numerical solution scheme, derive an
expression for the nodal equation at a point within the semi-infinite solid using a first
order discretisation in both time and x-direction. [15%]

n  erf(n) n ef(n) n  erf(n)
0.8000 0.7421 0.8500 0.7707 0.9000 0.7969

0.8050 0.7451 0.8550 0.7734 0.9050 0.7994
0.8100 0.7480 0.8600 0.7761 0.9100 0.8019
0.8150 0.7509 0.8650 0.7788 0.9150 0.8043
0.8200 0.7538 0.8700 0.7814 0.9200 0.8068
0.8250 0.7567 0.8750 0.7841 0.9250 0.8092
0.8300 0.7595 0.8800 0.7867 0.9300 0.8116
0.8350 0.7623 0.8850 0.7893 0.9350 0.8139
0.8400 0.7651 0.8900 0.7918 0.9400 0.8163
0.8450 0.7679 0.8950 0.7944 0.9450 0.8186

Table 1
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2 A cylindrical shaft with rod of radius R rotates in a flooded, perfectly symmetric
lubricated bearing with a spacing 6 between the shaft and supporting wall. The fluid
between the surfaces entirely fills the space, setting up a steady-state flow inside the cavity,
which is independent of the local angular position. The fluid is Newtonian with constant
density p , dynamic viscosity u ,thermal conductivity kx and specific heat c, . Assume
that R >> 0, so that the flow in the lubricating channel can be considered planar, as
shown in Fig. 1. The outer wall is stationary, and the shaft rotates with angular velocity
@ . The pressure is uniform throughout the fluid.

(a) Starting from the mass and momentum conservation equations (see attached
data sheet), show that the flow velocity profile is given by u = wRy/d.

(b) Assume that the outer wall of the bearing is kept at temperature T, and that
the inner wall (the shaft) is adiabatic.

(i) Starting from the thermal energy equation, and assuming that
temperature varies only with y, show that the temperature within the fluid
is given by

ro1=n+ o (3) (35

(ii)) Determine the heat flux at the outer walls, y = 0, and show that it is
equal to the total dissipative work rate integrated across the fluid layer.

(¢) During another period of operation, the outer wall is maintained at T , while
heat flows equally to the inner and outer wall. Determine the temperature distribution
T(y) as a function of the variables given, and the heat flux to each wall. Sketch the
temperature distribution, indicating any features or boundary conditions used.

(d) Considering the situation where both inner cylinder and outer wall start from
temperature Tj , but only the outer temperature is kept fixed as the shaft rotates, explain
and sketch how the temperature of the fluid and the shaft will evolve as a function of time.
Add to your description any equations or boundary conditions to be applied.
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3 A biological test kit involves the continuous injection of reactant into a uniform,
one-dimensional carrier flow well-mixed with dye, as shown in Fig. 2. The dye D reacts
with the reactant R forming a product P, according to R+D — P . The rate of reactant
disappearance per unit volume is wg = kp2YgrYp , where p is the constant density of the
mixture, Y; is the mass fraction of component i, and k is the reaction rate constant. The
reactant and product have the same diffusivity 2. Reactants and products flow uniformly
and steadily with velocity U along the x-direction. The concentration of reactant at x =0
is Yg o and the net mass flux of reactant at the origin is g 0.

(a) Consider a differential element dx along the flow path. Show that the
governing equation for the reactant mass fraction Yg is given by
d¥g

2
pU IR —P@d Yg

dx dx? ~YR:

State all assumptions made along your derivation.

(b) Inthe following, assume that the dye mass fraction remains constant and equal
to its initial concentration Yp  along the whole reactor.

(i) Determine the variation of mass fraction of reactant with x, when
diffusion is negligible compared to the other terms.

(i) For the case in which both reactive and diffusive fluxes are not
negligible, obtain a functional expression for the concentration as a function
of x and the parameters given, and explain clearly how the constants in the
equation are obtained from the boundary conditions. Do not solve for the final

constants.

(c) Explain how you would obtain a solution to the reactant concentration as a
function of distance if the dye concentration were allowed to vary along the reactor.
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4 A stream of fluid of mass flow rate 7, at an initial temperature T}, ; is to be cooled
by a stream of cooling flow rate r1. at an initial temperature T;; in a heat exchanger
with a concentric tube counterflow arrangement. The outlet temperatures for the hot and
cold streams are 7j,, and T, , respectively. The hot and cold streams have constant
specific heat capacities ¢, and c. , respectively. Assume that Cy, =y, ¢, < i o = C.

(a) Determine the maximum possible overall rate of heat transfer between the

two streams.

(b) Write an expression for the effectiveness € of the heat exchanger, defined as
the ratio of the actual to the maximum rate of heat transfer, as a function of the stream
inlet and outlet temperatures.

(c) Show that for the counterflow heat exchanger,

where n =UA/Cy, and Cr =Cy/C;, U is the overall heat transfer coefficient and A is
the total heat exchange area.

(d) Starting from the equation in (c), and expressing the ratio of temperature

differences as a function of € and C, , show that

_ l—exp[—n(1-C)]
" 1—=Crexp[-n(1—C;)]

(¢) Explain how the inner heat transfer coefficient 4; can be estimated if only the
friction factor Cr and the fluid properties are known.

() Explain what techniques can be used to increase the heat transfer rate per unit
volume of the heat exchanger.

END OF PAPER

Final version

[10%]

[10%]

[20%]

[20%]

[20%]

[20%]



Data Sheet: Conservation equations for steady, 2D constant density flows

Mass bal
ass balance 8u+av

ax " dy

x-Momentum balance

du du  1dp potu po*u
a+v8_y__58x+58x2+pay2+gx

u

Thermal energy balance







