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I (a) Figure la shows a thin-walled tube of square section with length 44, side 2a
and mass m. Find the principal moments of inertia of the tube centred on G, the centre
of mass. [20%)]

(b) Figure 1b shows the same tube with two opposite quarters removed (shown
dashed). The centre of mass is in the same location as before, and the mass is now m/2.
Find the inertia matrix for the modified tube centred on G relative to the axes aligned
with x,,z as shown. [60%)]

(¢) The modified tube from part (b) is forced to spin about the x axis with
angular velocity Q. Find the necessary couple (in magnitude and direction). [20%]

(a) (b)
Fig. 1
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2 A thin coin of mass m and radius @ wobbles on a horizontal table as shown in
Fig. 2. The motion may be assumed to be in steady state with the centre of the coin G

at rest. The coin is in contact with the table at point P where it rolls without slip. The
motion of the coin is described by Euler angles 6, ¢, v. Orthogonal unit vectors 1, j, k

(not fixed in the body) are defined in the figure, with j horizontal to complete the right-
handed triad.

(a) Draw a free-body diagram of the coin and hence find a vector expression for

the couple acting on the coin. [10%)]

(b) Find ¢, the steady rate of wobbling of the coin. [50%]

(c) Find an expression for the rate of turning of the head of the coin. Discuss
what happens if (i) @ is small, and (ii) 8 is close to 7 /2. [40%]

4
\
elevation

Fig. 2
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3 (a) (i) Describe with the aid of sketches the principles of operation of a
strap-down inertial navigation system. Your discussion should include the
integration requirements for rate gyro and accelerometer signals, and the
means by which g-computer compensation is used. [40%]

(i) Explain the features of a locally-level platform. What are the
implications regarding mechanical versus computational complexity, when
compared to a strap-down system? [10%]

(b) A rigid body has a body-fixed axis system (x, y, z) aligned with the
principal axes of inertia, with corresponding moments of inertia (4, B, C). These axes
are initially aligned with a fixed global axis system (X, Y, Z). The body moves in such

a way that its subsequent orientation can be described by two Euler angles: a rotation
@ taken about the ¥ axis, and a rotation y then taken about the new orientation of the z

axis.

(i) Show that the rotation rates expressed in the body-fixed axes are

given by ’
| = Osiny
Wy = Qcosy/ [25%]
@3 =y

(i) By considering the Lagrange equation for y, derive the Euler
equation of motion associated with @1 for the case of free motion with no

applied couple. [25%]
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4  Two uniform rigid rods are pivoted at one end about a fixed horizontal axis, and

connected by a linear spring of stiffness £ at the other end, as shown in Fig. 3. The rods
have length L and masses M; and M), and their motions are described by angles

6,(t) and B,(¢) to the vertical. The spring has zero natural length. The rods are closely
adjacent on the pivot axis and the spring always lies in the plane of the figure.

(a) By using Lagrange's equation, show that the equation of motion of the

second rod is
1

§MZLZé2 +%Msz sin, +kI? sin(6, —6)=0
where g is the acceleration due to gravity, and similarly derive the equation of motion
of the first rod.

(b) Assuming that §(¢) and &,(¢) are both small, find the mass and stiffness
matrices of the system. Hence find expressions for the natural frequencies associated

with small-amplitude vibration.

(¢) Now suppose that the two rods lie in exactly the same plane and cannot
pass through each other. Instead, they will collide and bounce. Contact may be
assumed to happen at a small stud at the end of the beams, near the spring position.
Suggest how the contact force might be represented to give a model of this process, and
show how this force can be expressed in generalized forces that would appear in the

Lagrange equations.

Fig. 3

END OF PAPER
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Part ITA Data sheet
Module 3C5 Dynamics
Module 3Cé6 Vibration

DYNAMICS IN THREE DIMENSIONS

Axes fixed in direction

(a) Linear momentum for a general collection of particles m; :

(b)

(c)

dp
ar =F©
where p = M vg, M is the total mass, vg is the velocity of the centre of mass and F(®) the

total external force applied to the system.
Moment of momentum about a general point P
Q© =(rg-rp) xp +hg
= h P+ r PXPD
where Q(© is the total moment of external forces about P. Here, hp and hg are the
moments of momentum about P and G respectively, so that for example

hp= Y (r,-rp)xm;Fi
[

=hg+(rG-re)xp
where the summation is over all the mass particles making up the system.

For a rigid body rotating with angular velocity w about a fixed point P at the origin of
coordinates

hp = frx(wxr)dm: lw

where the integral is taken over the volume of the body, and where

A -F -E Wy x
I=|-F B -D |, w=| % |, rz[y ,
-E -D C Wy, Z
and A= f(y2+zz)dm B= f(z2+x2)dm C= f(x2+y2)dm
D=fyzdm E=fzxdm F=fxydm

where all integrals are taken over the volume of the body.

Axes rotating with angular velocity £2

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for
example

p +Qxp=F©
where the time derivative is evaluated in the moving reference frame.
When the rate of change of the position vector r is needed, as in 1(b) above, it is usually
easiest to calculate velocity components directly in the required directions of the axes.
Application of the general formula needs an extra term unless the origin of the frame is
fixed.
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Euler’s dynamic equations (governing the angular motion of a rigid body)

(a) Body-fixed reference frame:
Aw1-B-Cmws = Q1
Bwy—(C-A) w3 w1 = Q2
Cw3-(A-B)ywy o = 03
where A, B and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [w1, an, w3] and
the moment about P of external forces is Q@ = [Q1, Q2, O3] using axes aligned with the
principal axes of inertia of the body at P.
(b) Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"):
AQI-(AB-Cw3) 2 = Q1
AQ:+(ASB-Cw3) Q2 = Q2

Cws = 03
where A, A and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [w1, wp, ws] and

the moment about P of external forces is Q = [Q1, @2, Q3] using axes such that w3
and Q3 are aligned with the symmetry axis of the body. The reference frame (not fixed

in the body) rotates with angular velocity £ =[€2, £, £] with 1=w; and Q=wn.

Lagrange’s equations

For a holonomic system with generalised coordinates g;
aldry or v
d | 34| ~oqi Y og = 4

where T is the total kinetic energy, V is the total potential energy, and Qj are the non-
conservative generalised forces.
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VIBRATION MODES AND RESPONSE

Discrete systems Continuous systems
1. The forced vibration of an N-degree-of- ~ The forced vibration of a continuous system
freedom system with mass matrix M and is determined by solving a partial differential
stiffness matrix K (both symmetric and equation: see p. 6 for examples.
positive definite) is
My+Ky=f

where y is the vector of generalised
displacements and f'is the vector of

generalised forces.
2. Kinetic energy
1 .t . 1 .2
L T=—|u"dm
T=>3'My : )

where the integral is with respect to mass
(similar to moments and products of inertia).

Potential energy
See p. 4 for examples.

1
Y =el Y
3. The natural frequencies w,, and The natural frequencies w, and mode
corresponding mode shape vectors g(”) shapes u,(x) are found by solving the
satisfy appropriate differential equation (see p. 4)

K™ = o 2 and boundary  conditions,  assuming
a T harmonic time dependence.

4. Orthogonality and normalisation

b_l(j)tMu(k) _ {0’ ji=Tg

‘ ) u]-(x)ukx m=1 .
kg {8 17 -k
w;, Jj=k

5. General response

The general response of the system can be The general response of the system can be

written as a sum of modal responses written as a sum of modal responses
N
: w(x,t)= D q;() u;j(x)
y(0 = Ya;0) ut = Ug(r) ; e
j=1

! . where w(x,t) is the displacement and ¢; can
ErE IS S ESnHOSE cqlumns = be thought of as the “quantity” of the jth
the normalised eigenvectors kt(J) and gj can mode.

be thought of as the “quantity” of the jth
mode.

3C5 / 3C6 data sheet 3 HEMH/RSL/DC/JW 2012



6. Modal coordinates g satisfy
g+ [diag(wf)] g=0
where y = Ugq and the modal force vector
Q-=U'f .
7. Frequency response function

For input generalised force f; at frequency

w and measured generalised displacement
yi the transfer function is

E’“"

nlw

(n)

H(j.k,o) =—’<=

\

(with no damping), or

u "y

g: Y k(n)

fi Do, +2iow,t, -

Yk

H(j.k,w)= >

(with small damping) where the damping
factor £ is as in the Mechanics Data Book

for one-degree-of-freedom systems.

8. Pattern of antiresonances

For a system with well-separated resonances
(low modal overlap), if the factor uj(")uk(")

has the same sign for two adjacent
resonances then the transfer function will
have an antiresonance between the two
peaks. If it has opposite sign, there will be
no antiresonance.

9. Impulse response

For a unit impulsive generalised force
fi= &(t) the measured response yy, is given

by

(n)y, ()

. N Lt] k
g(jkit)=yp()= Yy —L——

sinw,t
n=1 ©n
for t =0 (with no damping), or
N, (n), (n)
u\"uy
g(j,k,t) = E-& sinw,t e_w”:”t
n=1 ©n

for ¢ =0 (with small damping).
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Each modal amplitude g j(t) satisfies
. 2
gj+wjqj=0;

where Q] = ff(x,l’) uj(x) dm and f(x,t) is
the external applied force distribution.

For force F at frequency w applied at point
x, and displacement w measured at point y,
the transfer function is

w 1w, (X) uy (y)
H o i % 4
(xy w) F ; wﬂz_wi

(with no damping), or

Uy, (X) U, ()

242 ww,, -

H( X,y,m ——=E

(with small damping) where the damping
factor £, is as in the Mechanics Data Book

for one-degree-of-freedom systems.

(;07

For a system with low modal overlap, if the
factor u,(x)u,(y) has the same sign for two
adjacent resonances then the transfer
function will have an antiresonance between
the two peaks. If it has opposite sign, there
will be no antiresonance.

For a unit impulse applied at # = 0 at point x,
the response at point y is

n @n

for t = 0 (with no damping), or

glx,y,t) = 2 Un(X) 4 (Y) sin w,t ¢~ Onbnt
n Wn
for t =0 (with small damping).
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10. Step response

For a unit step generalised force For a unit step force applied at ¢ = 0 at point

0 <0  x, the response at point y is
i= 0 the measured response yy 1S S}
) t= h(x,y.t)= E”—Z”—y[l—coswnt]
given by - w;;
N o, ) . .
t = 0 (with no damping), or
h(j.k,t)=yp(t) = 2 [1- cosw,t] for #:20 (withmo ping)
n=1 h(t) zzw[l—coswnt[wncn’]
for ¢ =0 (with no dampmg), or n @n
N . (n), (n) for t =0 (with small damping).
u 'y
h{jk,t) = E-J—QE— [1 —COswy,t e_w”C"t]
n=1 Wp
for t =0 (with small damping).
Rayleigh’s principle for small vibrations
. . V_Y'Ky
The “Rayleigh quotient” for a discrete system isF = —’M where y is the vector of
y My

generalised coordinates, M is the mass matrix and K is the stiffness matrix. The equivalent
quantity for a continuous system is defined using the energy expressions on p. 6.

If this quantity is evaluated with any vector y, the result will be

(1) = the smallest squared frequency;

(2) < the largest squared frequency;

(3) a good approximation to w,% if y is an approximation to E(k)

(Formally, % is stationary near each mode.)
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GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS

Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x,?) , applied lateral force
f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 2
92w 9w 1 ow 1 ( aw
—5 - P—5 = f(xt V==P|—| dx ==—m||—]| dx
" ot ox A 2 f( (?x) 2 f at

Torsional vibration of a circular shaft

Shear modulus G, density p , external radius a, internal radius b if shaft is hollow, angular
displacement 6(x,t), applied torque f(x,¢) per unit length.

Polar moment of area is J = {7z / 2)(a4 - b4).

Equation of motion Potential energy Kinetic energy
2 2 2 2
0“0 a°0 1 a0 1 a0
=5 - GJ—% = f(x,t V==GJ|| —| d&x =—pJ||—| dx
p ot ox Fe0) 2 J(ax) 2p f( at)

Axial vibration of a rod or column

Young’s modulus E, density p, cross-sectional area A, axial displacement w(x,t) , applied
axial force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 2 2 2
dw d“w 1 w 1 dw
A - FEA = f(x,t ==FA[|—| dx =—=pA[|l—]| dx
P2 w2 ) 2 f(ax) 2P f(at)

Bending vibration of an Euler beam

Young’s modulus E, density p , cross-sectional area A, second moment of area of cross-
section /, transverse displacement w(x,z) , applied transverse force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 4 2. \2 2
Iw Jw 1 I“w 1 ow
A + El = f(x,t ==Fl||—5| dr ==pA[l—| dx
AT T B F =100 25\ % ] 2" f( &t)

Note that values of I can be found in the Mechanics Data Book.
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3C5 2012 Answers

1 (a) -g—maz, Zmaz, 2ma*
2/3 0 =3/8
® md®| 0 1 0
-3/8 0 1
3 .
©  gma’Q’j

2 (a) —mgacosfj

; g
=2
®) ¢ asinf
; 933 :
() (i) gy relative to a frame fixed in the table

(ii) -ZJE (%- 6) relative to a frame in which contact point with
a

table stays fixed

4 (a) %Mﬁé‘, +éMlgLsin 6; - kI*sin(6, —6;) =0

ME_L_?_ M; 0

%M13L+kL2 —kI?
(b) 3] 0 M, "

I %Msz+kL2

w

2_3g8  KLA(My+Ma)+gLM\My 2
2L MM,I% 13



