ENGINEERING TRIPOS PART [IA

Thursday 3 May 2012 2.30to 4

Module 3D7

FINITE ELEMENT METHODS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Attachment: 3D7 Data Sheet (3 pages).
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I The strong governing equation for a beam on an elastic foundation reads

d? d*v
— | El— oy =
dx? ( c!xz) Fov=y

where EI is the bending stiffness of the beam, v is the deflection, & is the stiffness of the
foundation and f is a distributed load.

(a) For the configuration shown in Fig. 1, derive a suitable weak form of the

equation.

(b) For a finite element formulation of this problem, comment on the required
continuity of the shape functions and explain what can happen if the shape functions do

not possess sufficient continuity.

(c) For a two-node element that runs from x| to xp, with x; < xp, compute the
ki1 component of the element stiffness matrix for the case & = 0. Assume that the first
degree of freedom corresponds to the deflection of the beam and that E7 is constant.
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2 Consider the element shown in Fig. 2.

(a) Determine the shape functions of the element. [10%)

(b) Compute the strain components &y, €y and &gy in terms of the nodal
displacements, (30%]

(¢) Compute the stiffness matrix of the element for a plane-stress linear elastic
problem, taking into account the boundary conditions indicated in Fig. 2. (30%]

(d) Assuming constant mass density, compute the consistent mass matrix of the
element. [30%]
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3 On a domain Q with boundary I', a modified heat equation in two dimensions reads

k FT T b a—T+ a—Tﬂ—O
Pl R PR

where T is the temperature, s is a heat source term, and k, ¢y and ¢y are constants. The

temperature boundary condition is

T=0 onl

(a) Show that a weak form of this modified heat equation is

dwg dT  dwydT aT / aT /
Q—
k/(ax s )dn cx/ 05, 4R~y woade wosdQ
where wy is a test function. [30%]

(b) For the quadrilateral four-node element shown in Fig. 3, discretise the terms
below and evaluate the (1,2) component of the resulting matrix.

/w(}%zdﬂ cy/ 2L a0

8
[50%]
(¢) If numerical integration is used to evaluate the integrals in (b), give the
recommended minimum number of Gauss quadrature points for four-node and nine-node
(20%]

elements. Justify your answers.

Fig. 3
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4 The critical time step for explicit time-stepping schemes depends on the largest

eigenvalue of the generalised eigenvalue problem

where K is the global stiffness matrix, M is the global mass matrix, A9 is the ith
eigenvalue and y(?) is the ith eigenvector.

(a) For a single elastic bar element with two nodes, constant stiffness EA and
a consistent mass matrix, compute the largest eigenvalue as a function of the element
length /. Comment on how the largest eigenvalue varies with EA.

(b) In finite element simulations, it is safe to compute the critical time step by
considering the eigenvalues of element-wise problems rather than the global problem.
Explain why the local eigenvalues provide a safe estimate,

(¢) For the model systems 3 + Ay =0, where A1) is the ith cigenvalue
of Eq. (1), compute the critical time step for the forward Euler method. Comment on
the suitability of the forward Euler method for this type of problem. Recall that for the
equation y = f(y,t), the forward Euler method is given by

Vel =Yn+ALf (Yn,tn)

END OF PAPER
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Engineering Tripos Part 1lA
Module 3D7: Finite Element Methods

Data Sheet

Element relationships

Elasticity
Displacement u=Na,
Strain e=Ba,
Stress (2D/3D) o=De

Element stiffness matrix k, = fv B'DBdV
Element force vector fo=[, N"fav
(body force only)

Heat conduction
Temperature T=Na,
Temperature gradient VT=Ba,

Element conductance matrix k.= fv. B'DBdAV

Beam bending
Displacement v=Na,
Curvature k=Ba,
Element stiffness matrix k.= [, B'EIBdV

Elasticity matrices

2D plane strain

1-v v 0
— E v 1-v 0
1+v)(1—-2v 1-2v
(1+v)( oo .
2
2D plane stress
0
D= E v 1 0
(1—-v?) _ 1—-v
2

Heat conductivity matrix (2D)
D= k 0
0 k
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Shape functions

3 (x5 ¥3)
Ny = ((d2ys — Xay2) + (Y2 = y3) x + (x5 = x2) y ) /24
y Ny = ((xayr = x138) + (=) X +(x1—x3)y) /24
2

T s, ) N3=((xlyg-xzyl]-l-(yl—}’z)x'!'(xz—xz))’)/m
X2, ¥z
X

A= area of triangle

I (xp9)

nA

3 o (0.1}
N=1-§-n
Ny=¢&
Ny=n

2 g
1 » ——
(0,0) (L)

Ny=2(1-&-n)"~(1-&-n)
Np=28%-¢

N3=2n*-n
N4=4§(1—5—7?)

Ns=4n&

Ne=4n(1-&-n)

4 3
Ni=(1—-&)(1-1) /4
" Ny =(1+&)(1-n) /4
2 Ny=(1+&)(1+n) /4
1 2 No=(1-&)(1+n) /4
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Hermitian element

Y

_ —(x =) (=1 +2(x1 —x))

3
s -‘xl)l(zx —x)
Ny = (x—x) [i;— 2(x2 — x))
vy = %2 1) (x — x2)

!'2

Gauss integration in one dimension on the domain (~1,1)

Using n Gauss integration points, a polynomial of degree 2n — 1 is integrated exactly.

number of points n  location &§; weight w;
1 0 2
1

2 1
3

— 1
V3

3 5

3 == ko

5 9

0 8

9

3 5

5 9
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