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Crib   

1 (a) The particle will behave quantum mechanically when its wavelength is of the 

same order of magnitude, or larger, than the width of the well.  In the case of the parabolic 

potential well of the form   22cxxV  , the apparent width of the well will depend on the 

particle’s energy.  Foe an energy, E, the width will appear to be cE22 . 

 

 (b) (i) We need to substitute the given wavefunction into the time-independent 

Schrodinger equation (TISE), for which we need the second differential with position, so 
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Substitution into the TISE gives 
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Cancelling  on both sides of the equation, and collecting terms for x gives 
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As E is a simple number (not a function of x) then this can only be a valid solution if the x2 

coefficient is zero, so 
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  (ii) Hence, if the x2 term in the equation for E in part (i) is zero, then the total 

energy of the electron in this ground state , E0, is 
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Hence, substituting for  gives 
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  (iii) The probability that a particle is at a particular position in space and time 

is given by ||2.  Therefore, the probability that the particle is at the centre of the well is 
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Elsewhere, 
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Hence, of the probability of finding the electron will have dropped to 0.1% of that at x=0 at 

a position x0.1, then 
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Hence, 
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 (c) If the wells overlap, then the higher energy levels would extend across the 

wells.  As the Pauli Exclusion Principal prevents two Fermions from being in the same 

state, the energy levels must split to form energy bands. 
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2 (a)  

 
(Free electron theory is the dashed line, and the nearly-free electron theory is the solid line). 

 

The gaps emerge because when /2 is close to the atomic spacing a, then the electron no 

longer sees the lattice as an average potential well, but as a potential raised or lowered by 

the lattice depending of whether the electron is likely to be close to the nuclei or in the 

region between the nuclei. 

 

 (b) If the total energy is both kinetic and potential, then 
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From de Broglie, 
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Therefore, 
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However, 
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So, by substitution, 

 

 
k

E
v







1
 

 

 (c)  
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(ii)
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 (d) The effective mass allows the interaction of the electron with the lattice 

(scattering) to be taken into account whilst still allowing simple Newtoniam mechanics to 

be applied (i.e. the lattice appears to modulate the mass). 
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3 (a) (i) for n-type Ge: 

 

 

 

 

assuming all donors are ionised, ie n=ND 

 

 

 

 

 

 

hence the work function of the n-type Ge is 

 

 

 

 

hence Φm > Φsc which for n-type semiconductor 

means it is a Schottky contact 

 

 

 

(ii) for p-type Ge: 

 

 

 

 

assuming all acceptors are ionised, ie p=NA 

 

 

 

 

 

hence the work function of the p-type Ge is 

 

 

 

 

hence Φm < Φsc which for p-type semiconductor means 

it is a Schottky contact 
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(b) For the Schottky barrier junction the depletion region may be considered to be in the 

semiconductor alone. The Poisson equation  states 
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where ND is the donor density. This assumes abrupt junction model, and donors to be fully 

ionised. 

 

Given that V only varies in the x direction across the junction this becomes 
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Assuming that there are no electric fields outside the depletion region, i.e. the E-field is 0 at x=w 

(whereby w is the width of the depletion region), integration gives 
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Integration again with the boundary condition that V=0 at x=0 gives 
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which may be evaluated at x=w to give the contact potential 
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Rearranging gives 
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(c) (i)  

 

 

 

 

 

 

 

 

 

 

(ii)  

 

 

for external bias V 
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Capacitance per unit area: 

 

 

 

(d) Upon cooling the ideality factor will increase.  This is due to the relative increase in tunneling 

current, which is not considered in thermoionic emission theory.  
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4 (a)    total rate of change in excess hole concentration 

 

 

   net rate of change of excess holes due to difference in recombination and 

   generation 

 

 

   rate of change due to drift of excess holes 

 

 

 

.    rate of change due to diffusion of excess holes 

 

 

 

 

 

(b)  λ=600nm,  hence  

 

 This is larger than Si bandgap (1.1 eV), so e-h pairs will be produced 

 

 

  

 

 

 

 

 

 

(c) Enery and momemtum must be conserved. So, unlike to direct semiconductors, in indirect 

semiconductors electron must loose energy and momentum. Indirect transisitions hence are based 

on three particle interactions, involving eg phonons or defect states. GaAs is example of direct band 

gap semiconductor. 
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(d) (i) see lecture notes: 

 

 

 

 

 

 

 

 

 

 

 

(ii)  
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(iii) Einstein relation: 
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(e) I-V for illuminated pn junction (photon energy is larger than Si bandgap): 

 

 
 

 


