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L (a) 	If (xo, uo) is an equilibrium pair, then by definition f(xo, uo) O. Suppose that x and u are perturbed 
from the equilibrium values, so that x Xo + Ox and u = Uo + ou. Then x Ox. We thus have, by 
Taylor series expansion: 

Ox f(xo + ox, Uo + ou) 	 (1) 

= f(xo,Uo) + aafl Ox+ aafl ou+ higher-order terms (2) 
x ("'0,1.10) u (Xo,uo) 

~ 	 O+Aox+Bou (3) 

where the higher-order terms have been neglected, the (i,j) term of the matrix A is af;jaxj, and the 
(i,j) term of the matrix B is af;jBu j , these partial derivatives being evaluated at x = Xo, u Uo. 

Similar expansion of yo+oy g(xo+ox, Uo+01./,) leads to 8y ~ Cox+D81./" where the (i,j) term of the 
matrix C is agi/aXj, and the (i,j) term of the matrix D is ag;jBuj , and noting that yo g(xo,1./,o). 

(b) i. For an equilibrium we must have h = 0, and hence 9 - (uo/mh'6) 0, or 1./,0 = mghij, so 

ho ~ 	 (4)Ymg 
ii. 	 The ball height is governed by a second-order differential equation, so we expect to need 2 state 

variables (and this is also clear from what we are asked to show.) Since the given output equation 
is 8h = [1,0]8x, it is clear that the appropriate choice of state variables is XI = h, X2 h. From 
this it is clear that 

8:i: (5) 

since !J (x,1./,) X2. To find the remaining elements of A and B we have hex, u) = 9 - (u/mxD. 
Hence 

A 2,1 
ah I 2u I 2g 	 (6) 
aXl (ho,uo) = mxi (ho,uo) = ho 

A 2,2 -0 	 (7)I(hotuo) 

1 
B2 ,1 mx1 2 I =-	 (8)a;: l(hO,UO) = 1 (ho,uo) 

Thus we have 

8:i: = [~ ~] 8x + [ _~ ] 8u 	 (9) 
ho mho 

as required. 
iii. 	The eigenvalues of the matrix A are the roots of det(sI A) = S2 (2g/ho) = 0, namely 

s ±v'2g/ho. So both roots are real, with one being positive. The system is therefore 1unstable I. 



iv. 	The transfer function is given by the standard formula (easily derived if not remembered) 

G(s) D+C(sI-A)-lB (10) 
1 

0+ [ 1 o ] [ 
s 0 	

(11)-~ ~1 r [ ]
Ito 

o J [,f._ ~1 [ 0 
[ 1 	 (12) 

Ito 

[ s 1 1 [ 
0 

1 ]-11ih5 
(13)

S2 ~ 
Ito 

1 
(14) 

2. 	 (a) For a (negative) feedback system, the return ratio is the open-loop transfer function obtained when 
a feedback loop is cut at some point, conventionally omitting the sign inversion. It is the product of 
all the transfer functions connected in series around the loop. (In a multivariable feedback system 
the return ratio is not unique, because transfer function matrices do not commute [GK =I KG etc) 
so the point at which the loop is broken needs to be specified.) 

(b) 	If £(s) is the return ratio, then the closed-loop poles (assuming a negative feedback convention) are 
the roots of 

1 + £(s) 0 (or det{I + £(s)) 0 in a multivariable feedback system). (15) 

Derivation of this (not asked for): Suppose a signal u is applied as the input to the 'cut' end of 
the feedback loop, and y is the signal obtained at the output. Then yes) -£(s)u(s). When the 
feedback loop is closed we have u == y, so u(s) -£(s)u(s), or [1 + £(s)]u(s) O. For this to be 
true with non-trivial u we must have that 1 + £(s) O. 

(c) A root-locus 	diagram assumes that the return ratio has the form £(s) kG(s) for some constant 
real gain k and some transfer function G(s). It traces the roots of 

1 + £(s) 1 + kG(s) = 0 	 (16) 

as k varies. This can be re-written as 
1

G(s) 	 (17) 

If So is a point on the root locus then it must solve this equation, and so if k > 0 then 

argG(so) = (2n+ 1)1T 	 for any integer n (18) 

(or argG(so) = 2n1T if k < 0). This is called the angle criterion. 
(Answers which emphasise the geometrical method of testing this condition for rational transfer 
functions can be accepted, providing that they some explanation of the criterion.) 

Cd) i. The poles are at the roots of S2 + 25, namely and at the roots of s2 + 2s + 5 = (s + I? + 4, 
namely -1 ± 2j. The zeros are at the roots of + s + 5/4 = (s + 1/2)2 + 1, namely at -4 ± j. 
So the pole and zero locations are as shown in 

ii. This can be cheeked in (at least) two ways: 
1. By showing that the angle criterion cannot be satisfied on the imaginary axis (except at the 
imaginary poles, for k 0): 
Suppose that a point So on the root locus is on the imaginary axis, as shown in Fig.2, where 
it has been assumed that Isol < 5. To check the angle criterion we consider the arguments of 
all the complex numbers So - Pi, for i = 1,2,3,4 (where Pi denotes the ith pole), and So - Zi 
for i = 1,2 (where Zi denotes the ith zero). We have arg (so - 5j) = -1T/2 and arg (so + 5j) = 



+11"/2 so the net angle contribution from the imaginary poles is zero. Now Iarg (so + 1 2j)
arg(so + 1/2 - j)1 is the angle a shown in Fig.2, so this is the net angle contribution from the 
complex pole-zero pair in the upper half of the complex plane. It is clear that 0 < a < 11"/2. By 
similar reasoning it can be seen that the net angle contribution from the pole-zero pair in the 
lower half of the complex plane is also smaller than 11"/2. Hence the net contribution from all the 
poles and zeros is smaller than 11", and hence the angle criterion cannot be satisfied at so. 
If Isol > 5, so that the trial point is on the imaginary axis above 5j, then a similar argument 
holds. The difference now is that arg(so - 5j) +11"/2 so the net contribution from the two 
imaginary poles is now 11". But the contribution from the remaining poles and zeros is agaln 
larger than 0 and smaller than 11", so again the angle criterion cannot be satisfied. 
2. By using the Routh-Hurwitz criterion this is a bit risky, as it will involve 4th degree 
polynomials and it is not clear in advance whether a condition can be obtained easily. But it 
does work out ok in this case: If £(s) kn(s)/d(s) then 1 + £(s) = 0 has the same roots as 
des) + kn(s) = O. We have 

5
des) + kn(s) (s2 + 25)(S2 + 2s + 5) + k(S2 + s + 4;) (19) 

{s4 + 2S3 + (25 + 5)s2 + 50s + 125) + ks2 + ks + 45k 
(20) 

5k
S4 + 2s3 + (30 + k)s2 + (50 + k)s + (125 + 4) (21) 

_ a4s4 + a3s3 + azs2 + als + ao (22) 

Now, from the Electrical and Information Data Book, the Routh-Hurwitz condition for all the 
roots to be in the left half-plane for n = 4 is ai > 0 for all i and 

(23) 

which in this case is 

{50 + k)(30 + k)2 > (125 + 5:)4 + (50 + k? (24) 

{=} 3000 + 160k + 2k2 > 3000 + 105k + k2 (25) 

{=} k 2 + 55k > 0 (26) 

which is clearly true for any k > O. 
iii. Following the usual root-locus construction rules (for k > 0): 

1. No part of the real axis is on the root locus (always to the left of an even number of poles 
and zeros). 
2. Two loci will terminate on the two zeros. 4 2 = 2 loci will approach asymptotes as k -+ 00. 

3. The asymptotes will intersect the real axis at the 'centre of gravity of poles and zeros': 

E poles - E zeros _ - 2 + 1 1 
(27)

#poles - #zeros - 2 

4. The angles of the asymptotes relative to the positive real axis will be 

(2n + 1)11" 
(28)

#poles - #zeros 

This allows the root locus to be sketched, as shown in Fig.3. The possibility that the loci from 
the imaginary poles terminate on the zeros can be ruled out by reasoning similar to that used in 
part 2(d)ii above. Trying a point to the right of the asymptote but below 5j quickly shows that 
the angle criterion cannot be satisfied. 
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3. 	 (a) The equations of motion are two coupled 2nd-order ODE's, so we need a 4-dimensional state vector 
x = [Xb ••• , X4]T. A conventional choice of state variables is Xl e, X2 = e, X3 = Z, X4 z. With 
this choice the equations in state-space form are: 

1 	 0 
o 0 

(29)o 	0[~l [-+
Z _!:!.1l. o 	0 

Tn 

y -a 0 1 o ] x 	 (30) 

(b) To test observability we need to check the rank of the observability matrix: 

o 
-a o1 01 1 

(31)o o 0 
a{m+M)g !:!.1l. o 	0mt m 

(where the efficient way of computing CAk is as CAk- 1 x A). The first two rows are clearly linearly 
independent of each other. Rows 3 and 4 are clearly independent of each other, and of rows 1 and 2, 
unless 

a(m+M)g 
=0 	 (32)me m 

which is the same as 
M£ 

a=---	 (33)
m+M 

Thus the observability matrix has full rank, and the system is observable, unless this condition holds. 
Alternatives: 1. The rank can also be checked by evaluating the determinant of the observability 
matrix. In general this is to be avoided for a 4 x 4 matrix, but in this case there are so many zero 
entries that it is quite easy to do it by hand. 
2. If the given value of a is substituted into the observability matrix then the 3rd and 4th rows 
contain only zeros and the loss of rank becomes obvious. 

(c) 	 a Me/(m + M) corresponds to having the camera monitoring the centre of mas..") of the cart-
bob system. When no external force is applied to the cart, this point has no acceleration (remains 
stationary if it starts stationary). It is therefore not surprising that the system is unobservable if 
only this point is monitored. 
Examiner's note: Surprisingly few people made the connection with the centre of maS.9. 

(d) 'Closeness 	to unobservability' can be quantified by considering the 'energy' in the output signal 
fa= y(t)Ty(t)dt when the system is released from an initial condition x(O) and no input is applied to 
the system. 

001 y(t)Ty(t)dt = l"" [CeAtx(OW[CeAtx(O)]dt 	 (34) 

1= x(O)T[eATtcTCeAtjx(O)dt 	 (35) 

x(O)T [1= eATtc1'ceAtdt] x(O) 	 (36) 

x(0)1'Wox(0) 	 (37) 

where Wo is the observability Gramian. (This development is correct if the system is stable. Other
wise the integral will not converge and a finite upper limit of time should be used instead.) 
It can be shown that Wo is singular if and only if the system is unobservable, in which case there will 
be some non-zero x(O) for which x(O)TWox(O) O. 'Closeness to unobservability' can be measured 
by the closeness of Wo to singularity. One standard way of doing this is to see how close the smallest 
Singular value of Wo is to zero. 



A practical consequence of using a value of a close to that which corresponds to unobservability is 
that some components of x will give rise to very little 'energy' in the measured output, and this will 
result in poor signal-to-noise ratio in the measurement since some noise is inevitable. The result 
will be poor estimation of the state. 

4. 	 (a) A linear system is controllable if its state can be transferred from any initial state Xi to any final 
state xf in a finite time T by the application of some control u(t), °S t S T. (Variations of this 
definition are acceptable.) 

(b) A linear system defined by the equations x Ax + Bu, with x ERn, is controllable if and only if 
the controllability matrix [B, AB, ... ,An-lB] has full rank. 

(c) The combined system has governing equation x = Ax + Bu, where 

[ XlX ] E R 2n 
, A B 	 (38)

X2 [ ~ ~ ], [~ ] 
so that the controllability matrix is 

A2n-1 B ][~ AB 
(39)A2n-IBAB 

Clearly the rows in the bottom haif of this matrix are not linearly independent of those in the top 
half, so this matrix does not have full rank, and hence the combined system is unobservable. 

(d) We now have X2 = AX2 + B BTXl, so the combined system has governing equation x Ax + Bu, 
where 

A = [B~T ~], B [~] (40) 

and hence the controllability matrix is now 

... ] (41)[~ ... 

Clearly this can have full rank: for example consider any I-state, I-input system with B = 1. Then 
the controllability matrix of the connected system is 

(42) 

which has full rank. Therefore identical systems connected in series in this way can be controllable. 
Examiner's note: Sections (c) and (d) revealed a severe lack offamiliarity with manipulating matrices 

among many candidates. Some did not realise that [xf, xrJT was just the same as [ Xl ], but had 
X2

[~f ]instead (which makes no sense, but that's another story). In part (d) many matrix expressions 

were written down which c01Lld not work dimensionally. 

(e) 	 The series connection implies that U2 = VI and U3 V2, so we have X2 kXI and X3 = kX2' Thus 
the complete (open-loop) system has the equation 

[0 ° 0] [v'k] (43)x = ~ ~ ~ x+ ~ UI 

Let the state-feedback be UI -klXI k2x2 - k3Xa -[kl' k2' k3]x, then the closed-loop equation 
is 

([ ~ 
[ 

H] (44) 

(45) 



; 

To get the closed-loop poles we need the eigenvalues, and hence the characteristic polynomial, of this 
matrix: 

).. + kl'l'k kd'k k3'l'k 
-k )..det (M - Ac) (46)0 
0 -k ).. 

).. + kl\/"k kd'k ).. + kl'l'k k3'l'k (47))..1 -k ).. I +kl -k 0 

)..[().. + kl Vk)" + kk2VkJ + k[kk3VkJ (48) 

)..3 + kl Vk)..2 + kk2Vk)" + k2k3Vk (49) 

But this should be the same as ().. + 1)3 = )..3 + 3)..2 + 3)" + 1. So comparing coefficients, we need 

(50) 




