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The Discrete Fourier Transform (DFT) for a data sequence {xn} of length N, where 

N is here assumed to be a power of 2, is defined as 

(a) Show that the DFT values Xp and Xp+N/2 may be expressed as 

where Ap is a series involving only the even numbered data points (xQ, X2, ... ) and Bp is a 

series involving only the odd numbered data points (xl, x3, ... ) and W is a constant which 

should be carefully defined. [30%] 

Find the computational complexity for evaluating Xp and Xp+N /2 for p = 
0,1, ... ,N/2 1 and compare this with a full evaluation ofthe DFT (assume that complex 

exponentials are pre-computed and stored). [20%] 

Solution: 

This is a very detailed solution - more detailed than requires for the 50% marks. 

where 

To see how this simplifies, look at the original DFT in (*) above, but evaluated at 
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frequencies p +N /2: 

N N
"T - I . 2/l: "T -1 . 2/l: N 

- '" -J(N/2)n(p+N/2)+ -/W(p+N/2) '" -J(N/2)n(p+1"")
p+N/2 - .t.... x2n e e .t.... x2n+1 e 


n=O n=O 


Now, simplify tenns as follows: 

e-j(~72)n(p+N/2) 

Hence, 

withAp WP andBp defined as before. 

Look at the two required tenns (WP assumed precomputed and stored): 

N -I !Y_I
1"" _ j 2/l: np 2 _ j.-1JL np
'" x2 e (NI2) B = '" x2 Ie (N/2).t.... n , p .t.... n+ ' 

n=O n=O 

-The tenns Ap and Bp need only be computed for p = 0,2, ... ,N/2 -1, since 

Xp+N/2 has been expressed in terms of Ap and B p - hence we have uncovered 

redundancy in the DFT computation. 

-Thus calculate the Ap and Bp for p 0,1, ... ,N/2 - 1 and use them for 

calculation of both Xp and X p+N/2 

-The number of complex multiplies and additions is: 

-Ap requires N /2 complex multiplies and additions; so does Bp. The total 

for all p = 0, 1, ... ,N/2 - 1 is then 2(N/2)2 multiplies and additions for 

the calculation of all the Ap and Bp terms. 

-N/2 multiplies for the calculation ofWPBp for all p = 0, 1,2, ... ,N/2-1 

-N = N /2+N /2 additions for calculation ofAp +WPBp andAp WPBp 

-Thus total number of complex multiplies and additions is approximately N 2/2 

for large N 
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-The computation is approximately halved compared to the direct DFT 

evaluation 

(b) Show that the N-point DFT of a real-valued data sequence has conjugate 

symmetry, i.e. that 

Solution: From definition: 

N-I 2 
XN-p = L xne-j-!fn(N-p) 

n=O 

Hence shown. 

_ j21tnN N~1 +j.21tnp 
e ~ I....t xne N 

n=O 
l.X; 

[20%] 

(c) Hence or otherwise show how to efficiently compute the DFTs of two real 

data sequences {xh} and {x~} by computing the DFT of a single complex data sequence 

{xn xA + jx~}. What is the computational complexity of such a procedure compared 

witrh direct evaluation of the two DFTs separately? 

Solution: 

We want X Jand x'j separately, but they are mixed up as Xp = XJ + jX'j (by linearity 
ofDFT). 

Now, from part b) result, 

[30%] 

So 

and 

Hence, 

as required. 
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2 (a) The rectangle window centred on n 0 is defined as: 

I, Inl ~N/2
Wn 

{ 0, otherwise. 

Show that the discrete time Fourier transform (DTFT) of this function is given by: 

sin(,Q(N + 1)/2)
W(exp(j,Q)) 

sin(,Q/2) 

Solution: 

DTFT is defined as: 

+00 

W (exp(j,Q) ) E wnexp( - jn,Q) 


n=-oo 


so here we have 

+N/2 
W(exp(j,Q)) E l.exp( - jn.Q) 

n=-N/2 

exp(+ jN/2,Q)(1 - exp( _ j,Q)N+l) 
1-exp( - j,Q) 

[GP with constant ratio exp( - j,Q)] 

exp(+jN/2,Q j,Q(N + 1)/2)(exp(+j,Q(N + 1)/2) -exp( -j,Q(N + 1)/2) 
(exp( - j,Q/2))(exp(+j,Q/2) exp( - j,Q/2)) 

[Factorising exponential terms to get complex pairs top and bottom] 

2jsin(,Q(N + 1)/2) sin(,Q(N + 1)/2) 
2jsin(,Q/2) sin(,Q/2) 

as required. 

Sketch the magnitude of this spectrum, paying particular attention to the main lobe 

and first few sidelobes. You may assume that N is large. [40%] 

Solution: 

For N large, we will see 'fast' oscillations in the spectrum due to the sin(,Q(N + 
I) /2) terms. These will lead to central lobe and sidelobes. Studying the first few of 
these, for low frequency ,Q, the tenn sin(,Q/2) behaves as ,Q/2 ('small x' approximation 

of sin(x)). Hence we have approximately: 

sin(,Q(N + 1)/2) = (N + l)sinc(,Q(N + 1)/2) 
,Q/2) 
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Therefore we have value N + 1 at frequency zero and the central lobe extends to the first 


null at n = ±2n/(N+ 1), and sidelobe maxima around n = ±2(n/2+nn)/(N+ 1), 


n=I,2,3, .... 

Sketching, we have: 

1200,----.----,----,----,-----,----,----,----,----,----, 

1000 f 

/ \ ;Lcentra, Lobe. width 4rrJ(N+1) 
i i. 
I I 

. I 


S+Obe~.at fr uencies ~(rrJ2+n")/(N+1). n=1.2.... 


600 


600 

; i 

! 

Nulls at frequencies ±2(nlt)/(N+1 ). n=1.2 .... 

/ -'.'\. / 

/ 

0.03 0.04 0.05 

(b) A signal Xn is multiplied by a general window function Wn to give Yn XnWn. 

Show from first principles that the DTFT of Yn is given by 

Y(exp(jn)) 2~r:X(exp(j.:t)) V (exp(j(n - .:t»)d.:t 

where VO should be defined. [25%] 

Solution: 

n=-oo 

= 

where VO WO is the DTFT of the window function. 
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(c) An FIR filter is to be designed using the window method. The ideal frequency 

response within the range .0 = -1C to 1C is specified as 

D(.o) = 1.01 <.oc{I,

0, otherwise 

where °< .oc < 1C. 

The ideal filter coefficients are to be truncated to zero for Inl > N /2. Show that the 

frequency response of the resulting filter can be expressed as: 

(.0) = _1 rfHflc sin(A(N + 1)/2)dA 
Dw 21C In-nc sin(A/2) . 

[20%] 

Solution: 

Using part b) result: 

Dw(.o) = _1 j1'C D(exp(jA» W (exp(j(.o - A»)dA 
21C -Jr 

and substituting for D: 

Dw(.o) = 21 jnC l.W(exp(j(.o A»)dA 
1C -nc 
1 In+nc = W(exp(j(A'»)dA' 

21C n-flc 

[substituting A' =.0 A and swapping limits] 

1 rn+flc sin(A'(N + 1)/2) dA' 
101 

21C In-nc sin(A'/2) 

as required. 

Hence explain, with the aid of sketches, the shape of the resulting frequency 

response, including the width of the transition band and any ripples in the passband or 

stopband. [15%] 

Solution: 

Now we can see that the resulting frequency response is just the area under the 

'sinc' function over different intervals of width 2Qc and centered upon frequency Q, see 

figure for commentary. 
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Fig. 1 

3 (a) A stationary random process {en} with autocorrelation function REE is the 

input to a stable linear system with impulse response {hn}, giving output {xn}: 

+00 
Xn L hmen-m 

m=-oo 

Show that the cross-correlation function between input and output is given by: 

+00 
L hIREE[k -ll· 

1=-00 

[20%] 

Solution: 

+00 
E [en L hmen+k-ml 

m=-oo 
+00 
L hmE[enen+k-ml 

m=-oo 
+00
L hmrEE[k--m] 

m=-oo 

as required. 

How is this result modified when {en} is white noise and the linear system is causal? [10%1 
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Solution: If the system is causal then hm 0 for m < O. Thus, 

+00 
REX[kj E hmrEE[k-m] 

m=O 

(b) A 1 st order (P = 1) autoregressive (AR) process obeys the following equation, 

with parameter Ia I< I: 

where en is zero mean white noise. Show that the autocorrelation function for this process 

obeys the following recursion: 

Rxx[k] = aRxx[k 1] +REX[-k]. 

Solution: 

[20%] 

Rxx[kj = E[xnXn+k] 

E[xn(aXn+k-I +en+k)] 

arxx[k-l] +rxE[k] 

= arxx[k- 1] + rEX [-k] 

since rXE[k] rXE[-k]. 

Hence show that the autocorrelation function for the AR process is 

where a} = E[e~]. 

Solution: From the above, we need an expression for rEX [-k]. Now, 

[20%] 

+00 
REX [k] E hmrEE [k 

m=O 
m] = hka; 

for this case, since rEE[k] = 0ka; (zero mean white noise). 

But, the AR system is causal, so hk 0 for k < O. Also, ho = 1 from the AR 

difference equation with input en On and zero initial conditions on X-I .... 

Thus, 

rxx[O] arxx[-I] + a; = arxx[1] + a; 
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(since rxx [1] = rxx [-1 j) and 

Rxx[kj = aRxx[k-l], k> 0 

Solving for rxx[O] and rxx[O]: 

rxx[OJ = a x arxx[O] + 0'; 

or, 
0'2 

rxx[O] = e 2
1 a 

But the second equation implies that 

rxX[kj rxx[O](al 

So, finally, 
0'2 

a 1klrxx[k] = e 
a21 

where the Ikl term arises because we know that rxx[k] rxx[-kJ. 

(c) The AR signal Xn is observed in a noisy and reverberant environment 

Yn = Xn 0.8Xn-l + Vn, 

where Vn is zero mean white noise having variance 0'3 = 1. 

Now, take a 0.9 and 

It is desired to estimate Xn from measurements only of Yn by filtering with an FIR filter 

having impulse response bn , n = 0, 1: 

.in boYn + blYn-l' 

Show that the optimal Wiener filter coefficients must satisfy the equations: 

bORyy [0] + blRyy [-1] Ryx [0] 

bORyy[lJ+bIRyy[O] = Ryx[1] 

and hence determine the coefficients of the filter. [30%] 

Solution: 
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Take derivative of the Wiener error criterion: 

A )d(Xn in)] =0 '=0 1
Xn db. ' l , 

I 

and: 
dXn -in 

dbO 

dXn -in 

db} 

Hence: 

and expanding out: 

E[(X,t-(bOYn+b}Yn-l»)Yn] =0, E[(xn-(bOYn+bIYn-l)Yn-tl =0 

E[(xn-(bOYn+blYn-d)Yn] 0, E[(xn-(bOYI1+blYn-}))Yn-tl 

rxy[O]-bOryy[O]-btryy[l], rXy[-I]-bOryy[-I] bl ryy [0] 

which, upon rearranging with ryy 1] = ryy [1], yields the required result. 

0 

4 Consider the k-means clustering algorithm which seeks to minimise the cost 

function 
N K 

C = .E .E snkllxn mkl12 

n=l k=l 

where mk is the mean (centre) of cluster k, Xn is data point n, snk I signifies that data 

point n is assigned to cluster k, and there are N data points and K clusters. 

(a) Given all the means mb and the constraint that each data point must be 

assigned to one cluster (that is, LkSnk = 1 for all n, and snk E {O, I} for all nand k), derive 

the value of the assignments {Snk} which minimise the cost C and give an interpretation 

in terms of the k-means algorithm. [30%] 

(b) You would like to automatically learn the number of clusters K from data. 

One possibility is to minimise the cost C as a function of K. Explain whether this is a 

good idea or not, and what the solution to this minimisation is. 

Version I (TURN OVER for continuation of Question 4 
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(c) Consider an algorithm for clustering high-dimensional data which first 

performs a principal components analysis (PCA) dimensionality reduction on the data, 

and then runs k-means on the low dimensional projection of the data. Will this result in 
the same clustering of the data as running k-means on the original high-dimensional data? 

Explain your answer. [40%] 
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" SOLUTION 

(a) Given the means, the problem decomposes into separate minimisations over 

each data point n. For data point n, the solution is to set snk = 1 for the value k which 

has the smallest distance Ilxn mkll 2, and to set snk! = °for aU k' =f k. In terms of the 
k-means algorithm, the interpretation is that we assign each data point to the cluster with 

the nearest centre, as measured by Euclidean distance. 

(b) Minimising C as a function of K is not a good idea. There are (at least) two 

ways to see this. One is that the optimal k-means cost for K could always be decreased 

by adding a new K + 1st centre, since the optimal solution for K is generally a sUboptimal 

case for K + 1. A second way is to consider the extreme where we have as many clusters 

as data points, K N. Then clearly we can obtain a cost C °simply by placing each 

mean on a distinct data point (e.g. mn = xn). Since C ;::: 0, this is the lowest possible cost 

solution no matter how the data is distributed, so it gives no insight into the actual number 

of clusters in the data. 

(c) Running peA dimensionality reduction on the data, and then k-means, will 

not in general result in the same solution as running k-means directly on the high 

dimensional data. To see this, consider in general that Yn = WXn is the lower dimensional 

peA projection of X n. Running k-means on {yn} means that we are mininising C = 

En,kSnkllWxn mkl12 rather than C = En,kSnkllxn - mkll 2. Assume we initialise all 
mk Wmk (the low dimensional projection of the means). Then one step ofk-means for C 
assigns snk 1 if IIWxn - Wmkl12 (xn mk)TWTW(Xn -mk) is minimised, ratherthan 

Ilxn mk112. Therefore the peA k-means corresponds to using a non-Euclidean norm 

to find the nearest mean, and generally only coincides with the original k-means when 

WTW=I. 

END OF PAPER 
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