
2

1 (a) Explain the assumptions behind the Michaelis Menten model for enzyme
kinetics. Write down the chemical reactions involved and introduce the relevant kinetic
constants. [30%]

Answer: The simplest (and generic) form of enzyme catalysis is the following:

S+E
k1−��−

k−1
C

k2−→ P+E

All these steps are assumed to be elementary reactions.

There are usually two types of assumptions that can be made regarding the relative kinetics of the
reactions.

•the equilibrium on the left side is fast, and that C
k2−→ P+E is the rate limiting reaction,

•the reaction C
k2−→ P+E is much faster than the substrate/enzyme binding.

Both assumptions lead to similar experimental characteristics.

(b) Find the expression for the product creation rate V as a function of the
substrate concentration S0, the Michaelis Menten constant KM and the maximal product
creation rate Vmax. [30%]

Answer: The differential equations governing this system are:

d[S]
d t

= k−1[C]− k1[S][E]

d[E]
d t

= (k−1 + k2)[C]− k1[S][E]

d[C]
d t

= k1[S][E]− (k2 + k−1)[C]

d[P]
d t

= k2[C]

We would like to relate the overall rate of the reaction V (i.e. the rate of production of P) to the
substrate concentration. If we assume that the transformation from C to P is fast, it is therefore appropriate
to use the steady-state assumption on C, i.e. that d[C]

dt = 0.

k1[S][E] = (k2 + k−1)[C] ⇒ [S][E]
[C]

=
(k2 + k−1)

k1
≡ KM

KM is called the Michaelis constant.

Assuming that the total amount of enzyme molecules is constant ([E]+ [C] = E0), we obtain:

⇒ [C] = E0
[S]

[S]+KM

⇒ V = k2E0
[S]

[S]+KM
=Vmax

[S]
[S]+KM

(1)
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Answers deriving the same expression but using the fast equilibrium approach were also accepted.

(c) The data presented in Table 1 were measured for a particular enzyme-
catalysed reaction by monitoring the product formation rate at various substrate
concentrations, keeping the enzyme concentration constant. Calculate the values of Vmax

and KM . What would V be for substrate concentrations equal to 2.5 × 10−5M and
5× 10−5M? What would V be if the enzyme concentration is doubled for a substrate
concentration equal to 5×10−5M? [40%]

Substrate concentration Product formation rate V
(Molar) (10−9 moles liter−1 min−1)

6.25×10−6 15.0
7.50×10−5 56.25
1.00×10−4 60
1.00×10−3 74.9
1.00×10−2 75

Table 1

Answer:

We can see here that V saturates for substrate concentrations lager than 10−3M.

Hence, Vmax = 75 · 10−9 moles litre−1 min−1

To solve for KM , we just need to pick a pair of values from the table and substitute in equation 1.

We then find KM = 2.5 ×10−5 M

If the substrate concentration [S] is equal to KM , then the velocity is Vmax/2.

V ([S]= KM) = 37.5 × 10−9 moles litre−1 min−1

Using equ. 1, we find:

V ([S]= 5 ·10−5M) = 50 · 10−9 moles litre−1 min−1

Finally, we can see from equ. 1 that doubling the enzyme concentration increases the product
creation rate in the same proportion. Therefore:

V ([S]= 5 ·10−5M & doubled enzyme concentration) = 100 · 10−9 moles litre−1 min−1

Version: solutions (TURN OVER



4

2 (a) Explain what the tube and discharge hematocrit represent. [20%]

Answer: The tube hematocrit, HctT , is the hematocrit measured from a snapshot of the blood flowing

in the tube; the discharge hematocrit, HctD, is measured from the composition of the blood that leaves the

capillary.

(b) Considering a perfectly cylindrical vessel of radius R, write down the
expressions of the tube and discharge hematocrits as a function of the local volume
fraction of red blood cell hct(r) and the velocity profile u(r), where r is the radial position
in cylindrical polar coordinates. [30%]

Answer:

HctT =

� R
0 2πrhct(r)dr

πR2 (2)

HctD =

� R
0 2πrhct(r)u(r)dr
� R
0 2πru(r)dr

(3)

(c) In a simple model, the local hematocrit hct(r) takes the following values:




hct(r) = Hct0 for 0 ≤ r ≤ R−δ

hct(r) = 0 for R−δ < r ≤ R

where Hct0 is a positive constant.

(i) What does δ represent and what would be its approximate value? [10%]

Answer: The length δ is the width of the red blood cell (RBC) depletion zone due to

their finite size. It can be assumed to be similar to the radius of a RBC, of the order of a few

microns.

(ii) Assuming that the velocity profile corresponds to a simple Poiseuille
flow, derive an expression for the ratio of the tube and discharge hematocrits
and sketch this as a function of the tube radius. [40%]

Answer: In the case of a Poiseuille flow, the flow profile has the form u(r) =
C(1− r2/R2) where C is a constant. By substituting the expression of u(r) in the definitions
of the tube and discharge hematocrits, we get:

HctT = Hct0
π(R−δ )2

πR2 = Hct0(1−δ/R)2
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HctD = Hct0
� R−δ
0 2πrC(1− r2

R2 )dr
� R
0 2πrC(1− r2

R2 )dr
= Hct0

�
2
�
1−δ/R

�2 −
�
1−δ/R

�4
�

Hence: HctT/HctD = 1
2−(1−δ/R)2

1/2

R

1

δ

HctT/HctD(R)

Fig. 1
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3 (a) In what physical units are the following quantities measured? (use
combinations of the following standard SI units: m, s, mol, kg, C, V, A, Ω, S, F)

– Diffusion coefficient
Answer: m2/s

– Concentration
Answer: mmol/dm3

– Electrovalency
Answer: unitless

– Permeability
Answer: m/s

– Membrane time constant
Answer: s

– Gating variables in the Hodgkin-Huxley model
Answer: unitless

– Membrane capacitance in the Hodgkin-Huxley model (assuming membrane
currents are measured in µA/cm2, membrane potential in mV and time in
s)
Answer: nF/cm2

– Axial resistance in the cable equation
Answer: kΩcm

– Input resistance
Answer: kΩ

– Propagation speed of the action potential
Answer: mm/s

Answer: Equivalent combinations of units will also be accepted. [20%]

(b) In an experiment, the sodium current through the membrane of a cell is
measured while holding the membrane potential at a fixed value. The normal values of the
intracellular and extracellular concentrations of sodium are ci = 50 mM and ce = 437 mM,
respectively. Before the experiment, both quantities are lowered to 1/100th of these
normal values. The experiment is conducted at room temperature, T = 293 K. Answer the
following questions with regard to this experiment using the following physical constants:

Version: solutions (cont.



7

R = 8.314 J/(molK) and F = 96485 C/mol. Make sure you provide the appropriate
physical units with your answers.

(i) What is the Nernst potential of sodium under these conditions?
Answer:

VNernst =
RT
F

ln
�

ce

ci

�
= 54.7 mV

[10%]

(ii) What is the sodium current at the Nernst potential?
Answer: The sodium current at the Nernst potential is I = 0 nA cm−2 (by definition).

[5%]

(iii) The sodium current is measured at 0 mV and is found to be I =
−5.47 nA cm−2. What is the sodium conductance of the membrane?

Answer:

I = g (V −VNernst)

g =
I

(V −VNernst)
= 0.001

S
m2 = 0.1

µS
cm2

Comment: we used the formula for the long channel limit, but the result should be the same

for any other channel model since the channel current at 0 mV is only governed by the Nernst-

Planck equation and so it is independent of the particular model of the channel that is used.

[10%]

(iv) What is the permeability of the membrane for sodium?
Answer:

g = P
F2

RT
ce − ci

lnce/ci

P = g
RT
F2

lnce/ci

ce − ci
= 146.5

pm
s

See also comment above. [15%]

(v) The sodium current is also measured at half the Nernst potential and is
found to be I = −2.26 nA cm−2. How can it be possible that the magnitude
of this current is less than half of that measured at 0 mV, ie. that the sodium
current does not appear to be a linear function of the membrane potential?

Answer: The experiment is conducted at extremely low concentrations at which the

sodium channels likely not behave as simple ohmic elements (because for the long channel

limit, in which they do, to be valid ionic concentrations need to be high) and instead they

obey the Goldman-Hodgkin-Katz equation (valid at low concentrations) which predicts a

non-linear dependence on membrane potential, and in particular it predicts lower current

magnitudes than a linear dependence would. [20%]
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(vi) Normal sodium concentrations are restored both inside and outside the
cell. What are the values of the sodium current at the following values of the
membrane potential:

– Nernst potential;

– half the Nernst potential;

– 0 mV?

Answer: According to both the short and long channel limits (and intuition), currents
scale linearly with concentrations (because the same forces act on more or less ions thus
carrying more or less current), and the normal ionic concentrations are 100 times larger than
those used in the original experiment, so that would predict the following sodium currents:

– at Nernst potential: I = 0 nA
cm2

– at half the Nernst potential: I =−226 nA
cm2

– at 0 mV: I =−547 nA
cm2 .

However, because ionic concentrations are much higher now, the channel currents may not

obey the GHK equations any more and instead may be linear functions of the membrane

potential (see also answer to previous question), in which case the sodium current at the

Nernst potential and at 0 mV remains as given above (because at these membrane potentials

it is the same regardless the channel model used) but at half the Nernst potential it will be

I =−547/2 nA
cm2 =−273.5 nA

cm2 [20%]
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4 At the end-stage of renal disease, over 90% of the blood filtration function is
typically lost. Dialysis is one of the main treatments for such disease. Hemodialysis
consists in connecting the bloodstream to a dialysis machine in order to remove toxic
solutes accumulating in the blood. The key principle involved in hemodialysis is a transfer
across a membrane of the solute from the blood to a second solution, called a dialysate.
The main objective in the machine design is to maximise the removal of solute from the
blood in each pass. In this question, the filtration rates obtained with two simple designs
are quantified and compared.

Fig. 2
As shown in figure 2, the flow rates in the blood and dialysate vessels are assumed

to be identical and equal to Q. The concentrations of a particular solute along the vessels
are cb(z) in the blood vessel and cd(z) in the dialysate vessel. The solute concentration in
blood entering the dialyser is c0

b and the solute concentration in the dialysate entering the
machine is negligible. The flux per unit length φ(z) of solute across the membrane is due
to passive diffusion and controlled by the following relationship: φ(z) =K(cb(z)−cd(z)),
where K is the membrane permeability.

(a) Consider first the case of the co-current flow geometry depicted in figure 2A,
in which the blood and dialysate flow alongside each other, in the same direction, over a
length L.

(i) Show that dcb
dz =−dcd

dz =− φ
Q [15%]

Answer: Consider a small element dz along the vessels. The conservation equation on
the blood vessel side gives:

Q dt cb(z) = Q dt cb(z+dz)+φ(z) dz dt =⇒ dcb

dz
=− φ

Q

Similarly, considering mass conservation on a dialysate side, we find:

Q dt cd(z)+φ(z) dz dt = Q dt cd(z+dz) =⇒ dcd

dz
=

φ
Q
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(ii) Write down a first order differential equation for φ(z) and find its
solution. Find the expression of cb(z) and cd(z) and sketch their graphs. [20%]

Answer: By differentiating φ(z)=K(cb(z)−cd(z)) and substituting in the results from
section a.i, we get:

dφ
dz

= K
�

dcb
dz − dcd

dz

�
=−2K

Q
φ

Its solution is:
φ = φ0 exp(−z/λ ) with λ =

Q
2K

and φ0 = Kc0
b

From the result of a.i, we have:

dcb

dz
=−dcd

dz
=−c0

b
2

1
λ

exp(−z/λ )

By integrating and using the boundary conditions at z = 0, we find:

cb(z) =
c0

b
2
�
1+ exp(−z/λ )

�
and cd(z) =

c0
b
2
�
1− exp(−z/λ )

�

cb
0

cb(z)

cd(z)

cb
0 /2

z
L

Fig. 3

(iii) The total mass transfer rate Ṁ is defined by: Ṁ =
� L

0
φ dz. What is its

maximum value, obtained when L tends to infinity? [10%]

Answer: When L tends to infinity, half of the solute crosses the membrane. Hence,

Ṁ = Qc0
b/2. The same result can also be found by direct integration of φ .
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(b) Consider next the case of the counter-current flow geometry depicted in figure
2B. Here, the blood and dialysate flow alongside each other, but in opposite directions,
over a length L.

(i) Show that φ(z) is constant. [15%]

Answer: Considering the change of direction of the flow in the dialysate vessel, mass
conservation in this new geometry provides the following equations:

Q dt cd(z) = Q dt cd(z+dz)+φ(z) dz dt =⇒ dcd

dz
=− φ

Q

We still have in the blood vessel dcb
dz =− φ

Q . The flux therefore satisfies:

dφ
dz

= K
�

dcb
dz − dcd

dz

�
= 0

Hence, φ is constant.

(ii) Show that:





c0
b − cb(L) = cd(0) =

φL
Q

c0
b − cd(0) = cb(L) =

φ
K

[15%]

Answer: We consider first mass conservation between input and output of the device.
Since φ is constant, the total mass transfer rate is φL. In the blood vessel, the solute flux
going in is Qc0

b. It must be equal to what goes out plus what have been transferred through
the membrane, Qcb(L)+φL. Considering the dialysate, the flux in is zero, therefore the flux
out must be equal to what has been transferred, Qcd(0) = φL.

The second equation simply corresponds to the expression of φ at the boundaries of
the vessels: φ = K(cb(0)− cd(0)) = K(c0

b − cd(0)) and φ = K(cb(L)− cd(L)) = Kcb(L).

(iii) What is the maximum value of Ṁ in this geometry, obtained when L
tends to infinity? [15%]

Answer: We need to find φ(L) and then take the limit φL for L tends to infinity. In the
previous equations, we found c0

b−cd(0) =
φ
K and cd(0) =

φL
Q . This leads to φ

�
1
K + L

Q

�
= c0

b.
The expression for φL therefore writes:

φL = Qc0
b

1

1+ Q
KL

lim
L→+∞

Ṁ = lim
L→+∞

φL = Qc0
b

This means that in a sufficiently long vessel, all the solute can be transferred to the

dialysate.

(c) What is the most efficient dialysis geometry? Briefly justify your answer. [10%]
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Answer: The counter-current flow geometry provides a total mass transfer rate twice as large in the

limit of long vessels. It is therefore more efficient than the co-current flow geometry.

END OF PAPER
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