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Engineering Tripos Part IIA TH[RDYEAR 

Module 3G4: Medical Imaging & 3D Computer Graphics 

Solutions to 2013 Tripos Paper 

1. CT imaging and reconstruction 

(a) (i) J.L(x, y) is the linear attenuation coefficient at the point (x, y) in the imaging plane. 
p",(s) is the projection of J.L(x,y) at angle ¢. q(s) is the reconstruction filter, theoretically 
a Ram-Lak filter which is the inverse Fourier transform of Iwl. [10%] 

(ii) [n a practical implementation, the integral is replaced by a finite summation: 

n-l n-l 

J.L(x,y) L[Pif.",(S) *q(s)] = LJ.Li(X,y) 
i=O i=O 

where 
J.Li(X, y) Pif.",(S) * q(s) , b..¢ Kin 

So the attenuation image J.L(x, y) is reconstructed by summing a number of sub-images 
J.Li(X, y), each derived from a filtered projection Pif.",(s) *q(s). Notice how J.1'i(X, y) varies 
only in the s direction (perpendicular to the X-rays) and not in the l direction (parallel to 
the X-rays). This is where the "backprojection" part of the name comes from. 

• Take n projections p¢ (8) of the object. 

• Convolve each projection with q(s). 

• Backproject each filtered projection in the l direction. 

• Accumulate the backprojections. 

(b) (i) The point projects to s = 0 for every value of ¢. 

[20%] 
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Its sinogram is therefore a straight line. [10%] 

(ii) At each value of cf;, we backproject a line through the origin. 

x 

The reconstruction therefore appears as an ensemble of bright spokes radiating from the 
origin. [10% ] 

(iii) In the limit of infinitely many projections, the reconstruction of the point will approach 
a llr distribution, where r is the distance from the origin (since the "spokes" pass through 
a circumference of 27fr at radius r, so the spoke density is proportional to llr). Viewed 
as a linear system, the image of a point has turned out to be a circularly symmetric llr 
distribution, so this is the system's impulse response. Since the system is shift-invariant, it 
follows that its response to an arbitrary attenuation distribution will be the correct distri
bution convolved with a circularly symmetric kernel of magnitude llr. [20%] 

(c) Reconstruction (b) looks like the correct distribution convolved with a llr filter, so this 
must be unfiltered backprojection. Reconstruction (c) is a typical Ram-Lak filtered back
projection, with characteristic aliasing artefacts caused by sparse sampling. In reconstruc
tion (d), the artefacts have been suppressed by applying a smoothing window (Hamming) 
to the Ram-Lak filter. In reconstruction (e), the resolution has clearly increased with no 
evident artefacts: this suggests narrower X-ray beams and more detectors. Reconstruction 
(f) exhibits classic cupping caused by beam hardening. [30%] 

Assessors' remarks: This question examined candidates' understanding of CT imaging 
and reconstruction. Part (a) was book work and well answered by most candidates. In (b), 
most candidates deduced the correct sinogram for a point attenuator and also worked out 
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its unfiltered backprojection, though relating this to a liT convolution proved surprisingly 
difficult. In (c), there were a couple of excellent answers, though most candidates had 
clearly not experimented with the virtual CT simulator (made available to all students 
taking the course) which was used to produce Fig. 1. 

2. Nuclear medicine imaging 

(a) SPECT stands for single photon emission computed tomography. PET stands for 
positron emission tomography. SPECT has the advantage of relatively cheap scanners 
and ready availability of suitable radiopharmaceuticals without the need for an on-site 
cyclotron. PET scanners are orders of magnitude more sensitive than SPECT scanners, 
since they use electronic rather than mechanical collimation: this allows reduced patient 
doses, shorter acquisition times and better signal to noise ratios. However, the scanners 
are expensive and the radionuclides short-lived, requiring an on-site cyclotron production 
facility. [20%] 

(b) While filtered backprojection is the standard for CT image reconstruction, SPECTIPET 
reconstruction differs in its requirements for (i) attenuation correction and (ii) Poisson 
noise suppression. Iterative reconstruction algorithms allow both of these issues to be 
addressed: attenuation factors contribute to the Cij sensitivity coefficients, while a proper 
Poisson model inside a ML-EM (with early stopping) or MAP formulation deals with the 
Poission noise. In contrast, filtered backprojection takes no account of Poisson noise, and 
attenuation correction pre-processing is only feasible in the case of PET. [20%] 

(c) 

SNR 

dose 

(i) At low measurement time, Poisson noise will dominate and the SNR will follow that of 
the Poisson distribution 0. At longer measurement time, Poisson noise will no longer be 
the dominant factor and other factors (electronic noise, patient motion etc.) will limit the 
SNR. In fact, patient motion is likely to reduce the SNR at large t. 

(ii) With low radionuclide dose, we have high Poisson noise and therefore low SNR. The 
SNR will improve with higher dose, but then turn a sharp corner when the counts be
come so large that photon detection starts to fail due to near-coincident arrival times from 
separate decay events (the probability of successfully detecting a photon decreases expo
nentially with increased radioactivity). [20%1 
(d) (i) Assume the two photons are ejected from the location of the emitter (i.e. the positron 
doesn't travel far) and then travel at the speed of light to the detectors with no scattering. 
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Let the distance travelled by the first photon be Xl and the distance travelled by the second 

photon be X2. The difference between the two detection times is 


t 

Now imagine an uncertainty .6.x in the emitter's location, increasing Xl and decreasing X2. 


The difference between the two detection times is now 


(Xl + .6.x) (X2 - .6.x) Xl - X2 2.6.x 2.6.x
t +.6.t --"--- + -- = t + - 

c c c c 

Hence.6.x c.6.t/2. [20%1 

(ii) Substituting .6.t = 250 ps, we find .6.x 3.75 cm. So the time-of-flight calculation 
can locate the emitter to within a range of ±3.75 = 7.5 cm. On its own, this is not going 
to be sufficient to form a useful image, so we will still need to gather data along multiple 
projections to localise the event more precisely. However, for each projection we can now 
say "I know the event happened somewhere in this 7.5 cm span", which is better than "I 
know the event happened somewhere along this line joining the two detectors." This extra 
information can be exploited in the reconstruction algorithm to improve the image SNR. [20% 1 

Assessors' remarks: This question was about nuclear medicine imaging. Parts (a)-(c) 

were book work covering standard PET/SPECT imaging and reconstruction issues. They 

were well answered by most candidates, though several had clearly not understood the first 

thing about these imaging modalities, despite similar tripos questions being asked in the 

past and cribs being readily available. Part (d) was a straightforward but unfamiliar quan

titative analysis of time-of-f1ight PET. Most candidates made a decent attempt at relating 

.6.t to .6.x, though the factor of two was sometimes missing and sometimes on the wrong 

side of the equation. While almost all candidates commented that .6.x was too large for X 


to be used on its own, only a handful realised that X ± .6.x could nevertheless improve the 

accuracy of conventional reconstruction algorithms. 


3. Interpolation and approximation of scalar data 

(a) Both interpolation and approximation are techniques for creating a continuous function 

which is used to represent discrete (sampled) data. Such a function can then be used for vi

sualisation or other purposes. This is called interpolation if the function passes through the 

sampled data, and approximation if the function merely comes close to the sampled data. 

Interpolants have the advantage of exactly representing the recorded data at the sample 

locations, which means they are more faithful to the data at these points. However, away 

from the sampled points they do not necessarily represent the most plausible underlying 

data variation - this depends on the technique. Also, if the data is noisy, an interpolant can 

amplify this noise in-between the samples. 


An approximation will not exactly represent the data but it can more easily be made to 

obey certain characteristics - for instance smoothness - away from these sample locations. 

This is a better thing to do if the medical data it represents is also known to be smooth in 
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reality. An approximating function can also be made to smooth over noise in the data - so 
long as the amount of noise is known. [20% ] 

(b) The two interpol ants are shown below, along with the original data. Both should pass 
through the original data points. The change in the nearest neighbour interpolant is exactly 
at the -0.5 and 0.5 points. 
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1.5 [10%] 

(c) (i) We need to look at the combination of the parameter matrix [t3 t2 t 1J and M when 
t 0 (the beginning of each segment) and t 1 (the end of each segment). For the former 
we want this to return [0 1 00] so that Sx(O) = F(x); for the latter we want [00 10] so 
that Sx(1) F(x + 1). Hence at t = 0: 

[ F(r - 1) 1F(x)
Sx(O) = [0 0 0 1] M F(x + 1) 

F(x 2) 

and 

-1 1 -9 9 2 -2 

M 
[ -1 n2 1 -2 -11 1-l-b [ -13 12 -15 3 

a -1 0 1 o '6 -3 0 3 0 0n+ [~0 0 0 o 1 -2 1 1 0 

hence 

Sx(O) = (~[1 - 2 1 0] + [0 1 0 0]) [ ~1~)::; 1 
F(x + 2) 

which will return F(x) if ~ = 0 and 1 - ~ 1, both of which lead to the condition that 
b = 0 for interpolation. 
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Now checking interpolation at t 1: 

F(x 1) 1F(x)
Sx(l) = [1 1 1 1] M F(x + 1) 

[ 
F(x + 2) 

hence 

Sx(l) = (~[O 1 2 1] + [0 0 1 OJ) [ ~1~C; 1 
F(x + 2) 

from which it can be seen that b 0 will return F(x + 1) as required. [15%] 

(ii) The gradient is found by taking the derivative of the parameter matrix. Hence at t = 0: 

F(x - 1) 1 
I F(x)

Sx(O) = [0 0 1 0] M F(x + 1)
[ 

F(.x + 2) 

hence 

F(X 1) 1 
S~(O) = (a[-l 0 1 0] + ~ 10 1 OJ) 

[ 
~~~)+1) = (a+~) (F(x+1) F(x - 1)) 

F(x + 2) 

For the other end t = 1: 

F(x - 1) 1 
S~(1) [3 2 1 OjM F(x)

F(x + 1)[ 
F(x + 2) 

hence 

S~(l) = (a [0 - 1 0 1] + ~ [0 F(x)) 

The gradient is hence always a difference of the surrounding points and S will have Cl 
continuity independent of a and b. [15%] 

(iii) Continuing with the approach from (ii) we find that, for the second derivative: 
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F(x - 1) 1 
S~(o) = (a [4 2 - 4 - 2] + b [1 4 - 5 0] + [0 - 6 6 0]) ~~~)+ 1) 


[ 

F(x + 2) 

and 

F(x - 1) 1 
s~ (1) = (a [-2 - 4 2 4] + b [0 - 5 4 1] + [0 6 - 6 0]) ~~ ~)+ 1) 


[ 

F(x + 2) 

For C2 continuity, the second derivative can only be a property of the immediately sur
rounding points: so F(x + 2) must not be involved in the former equation, nor F(x - 1) 
in the latter. Hence a = O. We also require the same weighting of the surrounding points, 
i.e.: 

b -5b+ 6 

4b - 6 4b - 6 

-5b+6 b 

These are satisfied when b = 1. Hence a = 0, b = 1 produces a C2 continuous curve S. [20%] 

(iv) A sketch is shown below. a = 0, b = 0 is C2 continuous and does not interpolate 
the points (this is actually a B-spline), a = ~,b = 0 does interpolate the points, and the 
gradient at each location is just the difference of the surrounding points (this is actually a 
Catmull-Rom spline). a = 0, b = 0 interpolates the points and has a zero gradient at each 
point. 

1.21-~-~-~-~-~-~-;=::::====:::;l 
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[20%] 

Assessors' remarks: This was a very popular question which tested candidates' knowl
edge of data interpolation and approximation. Parts (a) and (b) were mostly answered well, 
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though some candidates failed to centre the nearest-neighbour interpolant on x O. Part 
(c) was more patchy, though there were some near-perfect answers. Many candidates spent 

a lot of time on unnecessary mathematical working, for instance evaluating the whole of 

M before thinking through what the pre- and post-multiplying vectors were. 


4. Extracting surfaces and surface normals from 3D data 

(a) Real surfaces within 3D medical data may either be marked by the transition from one 

set of data values to another, as in computed tomography, or they may be marked by locally 

high data values, as in ultrasound. In the former case, a surface can be directly picked 

out by selecting a threshold (for instance between bone and soft tissue) then applying an 

algorithm like Marching Cubes to extract a polygonal representation of the surface. In the 

latter case, the data will need to be processed first, before it can be thresholded. In any 

case, medical data is almost certain to have enough noise in it to warrant a smoothing step 

before any attempt at extracting a surface. 


Medical data is usually complex, and many polygons (usually triangles) will be needed 

to represent a typical surface within a data set - of the order of a million. Although this 

could be reduced by post-processing, with the power of modern graphics cards, we usually 

stick to a polygon representation for this sort of data. The size of polygon also needs to be 

considered - a surface with much more detail will be generated if the polygons are smaller. 


If the surface is intended for visualisation, it is generally necessary to post-process in order 
to improve the aspect ratio of the triangles in the surface, since this makes later rendering 
stages work better. Surfaces which are not completely contained in the data set can also be 
an issue: we have to decide what to do at the point that the surface reaches the edge of the 
data. If we force it to be closed by considering everything outside the data set to also be 
outside the surface, we can go on to measure volume, but it might not be correct. Ifwe only 
display surfaces actually within the data, they will not in general be closed (watertight) and 
volume measurement is not then possible. [30%] 

(b) (i) Each vertex will be connected to several different triangles. The surface normal 
to one triangle can be calculated by taking the cross-product of vectors along two of the 
edges. If the triangles vertices are stored consistently, this cross-product can be chosen to 
always create an outward pointing surface normal. A normal at each vertex can then be 
formed by taking the average of each of the normals of triangles containing that vertex. 
(More complicated techniques are also possible which take into account the angle which 
the triangle sub-tends at the vertex.) [l0%] 

(ii) To calculate the normal, we need two vectors a and b lying on the surface: once we 

have these we can take the cross-product to get the surface normal. The easiest way to get 

these two vectors is to take the derivative in each of the sand t directions. Hence if: 


a(s, t) = [axCs, t) ayes, t) az(s, t)] 

b(s, t) [bx(s, t) by(s, t) bz(s, t)] 
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then: 

axes, t) = [3s 2 2s 1 0]MQxMT[t3 e t IJT 


bx(s, t) = [8
3 

8
2 

8 IlMQxMT[3t2 2t 1 OlT 


and similarly for the y- and z- coordinates. The surface normal n is then given by: 


n(s, t) (a(.'1, x b(.'1, t» [20%] 

(iii) Qx is a 4 x 4 matrix which contains the x-coordinates of a 4 x 4 grid of points defining 
the surface; Qy and Qz contain the other coordinates of these points. The patch P will 
be defined roughly between the middle four of these points, though the B-spline does not 
in general pass through any of the points. These points need to be close to the actual 
surface - so for instance we could define the grid of points by taking a 4 x 4 grid of parallel 
lines, intersecting these with the data set, and defining points where these lines cross the 
iso-surface. This would only define one surface patch: defining a complete surface would 
require the joining of many patches which is somewhat more complex. [ 10%] 

(iv) Given that we are extracting an iso-surface from a 3D data set, the normals to this 
surface will be at the direction of maximum gradient in the data. If.!!:e data values are 
given by d, then the data gradient is given by '\7d. Hence if we evaluate '\7d at the isosurface 
locations, this will give a vector pointing along the surface normal. [10%] 

(c) The cubic and data-based methods produce a continuously varying surface normal, 

whereas the polygonal method only generates discrete normals at vertices (though these 

can be interpolated across the triangles for visualisation). 


The smoothest normals are likely to result from the B-spline data, since this is a smooth 
approximating function, but this depends on how well the parametric surface has been 
extracted from the data set. Hence this method will be the least sensitive to noise. The 
data-based method will be the most noise-sensitive, since there is no explicit smoothing, 
and taking the derivative will amplify the noise in the data. The polygonal method will 
have some robustness to noise, mainly depending on the size of the polygons, since the 
polygon normals are averaged to create the normals at the vertices. [20%] 

Assessors' remarks: This was an unpopUlar question, though the one candidate who an
swered it did reasonably well. Given the spread of marks on Question 3, it seems likely 

that many candidates would have done better to attempt this less mathematical question. 

The question examined techniques for extracting iso-surface and iso-surface normals from 

discrete 3D data. 


5. Rasterisation, shading and anti-aliasing 

(a) Rasterisation refers to the process of displaying graphics primitives (lines, polygons 
etc.) on discrete, pixelised displays. Rasterisation algorithms generate a list of pixels 
which are shaded in order to display the primitive. More advanced rasterisation algorithms 
incorporate anti-aliasing features. Rasterisation is also sometimes referred to as scan con
version. [10%] 

9 



(b) (i, ii) It is important to remember that, to prevent enlarged areas, edges are shaded only 
up to the y-value immediately before the end vertex, and scan lines are shaded up to one 
pixel before the right hand edge. [20%] 
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(a) (b) 

(iii) Gouraud shading uses bilinear interpolation of the intensities at A, Band C to calculate 
the intensity at P. In this case, the scan line containing P is exactly halfway along the edges 
BA and CA, and P is half way along this scan line, so 

Ip = 0.5(0.518 + 0.5IA) + 0.5(0.5Ic + 0.5IA) = 0.25(18 + Ie) + 0.5IA = 37.5 [10%] 

(c) After rotation of the viewpoint and rasterisation, the new vertex, edge and shaded pixel 
positions are: 

I I i I I i I I I I 
198 199 200 201 202 198 199 200 201 202 

~ ~ 

N N '" '" 

'" '" ~ ~ 

'" '" '" '" 

~ 

(c) (d) 

The vertex intensities will be the same as before, since nothing that affects the Phong 
equation has changed: all that has happened is a twist of the viewpoint around the principal 
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viewing axis. Now, the scan line containing P is 0% of the way along the edge BA and 

75% of the way along edge CA, and P is 75% of the way along this scan line, so 


Ip = O.25(1.0IB+0.OIA )+O.75(O.25Ic +O.75IA ) 0.25IB+0.1875Ic +O.5625IA = 36.25 [30%J 

(d) The scene should look identical in (b) and (c), apart from a 45° rotation. And yet the 

area of the triangle has changed from 10 pixels to 8 pixels, and the intensity of the pixel at 

the centre of the image, which represents exactly the same world location in (b) and (c), has 

changed from 37.5 to 36.25. Switching to Phong shading is not going to fix the intensity 

anomaly: the problem is that the relative locations of A, B, C and P have changed, and 

this will affect the interpolation of normals just as it affects the interpolation of intensities. 

Instead, what we have here are aliasing artefacts. 


Aliasing artefacts arise because images are rendered into a discrete sampling array in space 

(and, in the case of animations, in time). The most commonplace aliasing artefact is the 

ubiquitous jagged edge of a polygon or shadow. "Jaggies" are particularly noticeable in 

animated sequences, where edges appear to "crawl", and small or thin objects may appear 

and disappear depending on their orientation ("scintillate"). In (b) and (c), we saw a less 

severe example of scintillation, where the area of the triangle changed depending on its 

orientation. 


More advanced rasterisation techniques go some way towards suppressing aliasing arte
facts. "Supersampling", or "postfiltering", involves rendering the image into an intermedi
ate frame buffer at n times the display resolution. The supersampled image is then low-pass 
filtered at the Nyquist limit of the final display frame buffer, which is filled by subsampling 
the intermediate frame buffer. "Prefiltering", or "area sampling", involves rasterising each 
polygon's edges to sub-pixel accuracy, so that each pixel can be classified as, for example, 
30% polygon A, 20% polygon Band 50% polygon C. Then the intensity of the pixel is set 
to a weighted average of the individual polygon's contributions. Both techniques are com
putationally expensive, though hardware postfiltering is now commonplace in commodity 
PC graphics cards. [30% ] 

Assessors' remarks: This question was about rasterization. The candidates were asked 

to work through some straightforward examples to demonstrate how this stage of the ren
dering pipeline might introduce geometrical and intensity errors into animated sequences. 

The candidates were then invited to speculate how these errors might be corrected by anti

aliasing. There were some excellent answers, but also a fair number of minimal attempts 

suggesting a last minute token effort: this affected the average mark. It was disappointing 

how many candidates resorted to lengthy, matrix multiplication calculations to rotate the 

vertices of a triangle through 45°, when this could be done in a few seconds by inspection. 


6. The shadow z-butTer algorithm 

(a) The shadow z-buffer algorithm is a two-stage process. The scene is first "rendered" 

using the light source as the viewpoint. No intensities are calculated, but a "shadow" z

buffer is filled in the usual way. At the end of this stage, the shadow z-buffer contains the 

distance from the light source to the nearest polygon along each ray. 
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The second stage involves rendering the scene from the viewpoint. A standard z-buffer 
algorithm is used, with one extra step. If a point is visible, its 3D screen coordinates 
(X8' Ys, zs), as seen from the viewpoint, are transformed to 3D screen coordinates (x~, y~, z~), 
as seen from the light source. The (x~, y~) are converted to 20 device coordinates and used 
to index the shadow z-buffer. The retrieved value Zb is compared with z~. If z~ > Zb, there 
must be a surface between the point and the light source, and the point is rendered with a 
reduced illumination. Otherwise the point is rendered as normal. 

Shadow z-buffer 

A single pixel in the view plane will not map onto a single pixel in the shadow z-buffer. 
This means that a pixel may be partly in shadow and partly not. If we use only one Zb 

to decide whether the pixel is in shadow, the rendering will suffer from jagged shadow 
boundaries. To avoid this, we calculate (x~, y~) for each of the four corners of the pixel. 
This defines a quadrilateral in the shadow z-buffer. Ifwe now look at each Zb value covered 
by the quadrilateral, we can deduce the fraction of the pixel in shadow. We then use this 
fraction to calculate a suitable attenuation factor. The hard edge of the shadow will be 
softened for the pixels partly in shadow, and the aliasing artifacts suppressed. [30%] 

(b) (i) The viewpoint transformation is clearly linear (w = 1) and is therefore an ortho
graphic projection. The diagonal nature of the matrix reveals that there is no rigid body 
transformation between the local and view coordinate systems. The light source trans
formation is nonlinear (w depends on Xl) and is therefore a perspective transformation, 
with projection rays emanating from a single point: we are modelling a point light source. 
There is a rigid body transformation between the local and light coordinate systems. [15%] 

(it) The camera's transformation matrix is trivial to invert by inspection, so 

0 0 0 01-50]wy~ 0 1 o 0 200 0[W£ ] = 
W"'YI 1.25 0 o 75 0 -100""'8 [ [T ~ ][ 0~5 ] L~Jw 1 0 o 100 0 0 

Therefore (x~, y~, z~) (0,0,0.75). [15%] 
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(iii) First convert (x~, y~) to 2D device coordinates. The 400 x 400 shadow z-buffer spans 
the range -1 < x~ < 1 and -1 < y~ < 1, so 

x 400 x (0 1))/2 = 200 

and likewise for the y coordinate. Looking at (200,200) in the shadow z-buffer we find the 
value 191, which is 0.75 x 255, i.e. point A. So there is nothing between point A and the 
light source. But this is just the centre of the pixel, and we should check its corners which, 
with the aid of the dots, we know map roughly here: 

193 192 191 73 73. . 
~ 

193 191 73 73 

!ij 

8l 

'" ;::: 

Given that the scene comprises several smooth, continuous surfaces, we can deduce that 
the z-buffer values in the range 191-193 belong to point Ns surface, but the sudden jump to 
73 must be some other surface closer to the light source. The pixel is right on the shadow's 
edge, 114 in shadow to be precise, and we should therefore attenuate its intensity by 25%. [20%] 

(iv) The negative z~ coordinate would place point A closer to the light source than the light 
source's near clipping plane. Clearly, if any polygon is clipped it is not going to contribute 
to the shadow z-buffer and not going to cast any shadows. We need to make sure that 
the near clipping plane does not result in any potential shadow-casters getting clipped. In 
this case, we have at least one surface (the one containing point A) that is clipped, so the 
shadow z-buffer algorithm is not going to detect all shadows correctly. [20%] 

Assessors' remarks: This question was about the shadow z-buffer algorithm. It started 
with 30% book work, where students were asked to simply describe how the algorithm 
works. The solutions fell into two categories. "Serious" solutions were generally excel
lent, the only shortcoming being a failure to mention aliasing. However, the average mark 
was dragged down by a handful of candidates who could not appreciate that the question 
was about shadows and instead described the standard z-buffer algorithm for hidden sur
face removal: very disappointing. The rest of the question asked the candidates to work 
through a quantitative case study with numbers contrived to be straightforward. Again, the 
competent candidates did this well, with just the occasional algebraic slip. 

Andrew Gee & Graham Treece, May 2013 
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