
ENGINEERING TRIPOS PART IIA 


Wednesday 1 May 2013 2 to 3.30 

Module 3C6 

VIBRATION 

Answer not more than three questions. 


All questions carry the same number ofmarks. 


The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

Attachment: 
Data Sheet: 3C5 Dynamics and 3C6 Vibration (6 pages) 

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS 
Single-sided script paper Engineering Data Book 

CUED approved calculator allowed 

You may not start to read the questions 
printed on the subsequent pages of this 
question paper until instructed that you 

may do so by the Invigilator 
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1 (a) An oilwell drillstring can be regarded as a length L of pipe with a thin 

circular cross-section of external radius a and wall thickness h. The material of the pipe 

has shear modulus G and density p. Unsteady forces at the drill-bit can excite 

torsional vibrations in the drillstring. Regarding the top of the drill string as being 

rigidly fixed while the bottom end is free, derive expressions for the mode shapes and 

natural frequencies of torsional vibration. Sketch the first three mode shapes. [35%] 

(b) A better approximation for the top of the drill string is that it is fixed to a 

rotor with polar moment of inertia J representing the drilling motor. Write down a 

suitable boundary condition, assuming that the rotor itself is free to rotate without 

constraint Hence derive an expression whose roots give the new natural frequencies. [35%] 

(c) Give a graphical construction to show where the new natural frequencies lie 

in relation to those found in part (a). Sketch what you think the first three mode shapes 

look like now. [30%] 
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2 (a) A xylophone bar can be regarded as a bending beam with a unifonn 

rectangular cross-section, with free boundaries at both ends. The length of the bar is L, 

the width b and the thickness h, and it is made of material with Young's modulus E and 

density p. Derive an expression whose roots give the natural frequencies. [25%] 

(b) Given that the fIrst two roots of coszcoshz ... l are z = 4.73 and 7.85, fInd 

the fIrst two natural frequencies in Hz if L = 0.5 m, b = 0.05 m, h = 0.02 m and the bar 

is made of wood with a Young's modulus E= 20 GPa and density p = 800 kg m-3 . 

Sketch the corresponding mode shapes. [25%] 

(c) In order to obtain a better musical note from the bar, it is desired to adjust 

these frequencies so that they are exactly in a simple whole-number ratio. It is 

proposed to do this by adding a small mass M at a chosen position x = a, where x is the 

distance along the beam measured from one end. Assuming that the mode shapes do 

not change much as a result of the added mass, use Rayleigh's principle to show that 

the perturbed natural frequency On of a mode f/>n(x) with original natural frequency 

OJn is given approximately by an equation of the fonn 

where B is an expression to be detennined. [30%] 

(d) Identify the closest whole-number ratio of frequencies to aim for. Without 

detailed calculations, describe a suitable strategy to achieve the desired musical tuning 

with minimal added mass. [20%] 
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A four-storey building is subject to earthquake loading. The system is modelled 

in two dimensions as shown in Fig. 1. Four floors, each of mass m, are able to move 

laterally only. Small displacements from equilibrium are denoted by the vector 

[Yl Y2 Y3 Y4 r· The floors are connected to each other by undamped walls, 

with lateral stiffness kl2. The base moves laterally with displacement x. 

(a) Write the matrix equations of motion for the system. Show that 

displacement x of the base gives rise to an equivalent force lex applied to the first floor. [20%] 

(b) Without calculations, sketch the expected mode shapes for undamped 

lateral vibration of the building. [20%] 

(c) On a dB scale, sketch the vibration transfer function for displacement Y4 of 

the top floor due to the lateral displacement x of the base. [15%] 

(d) Estimate the first natural frequency !OJ. with Rayleigh's Quotient using the 

approximate mode vector [ 4 7 9 lOr, which is the shape of the static 

deflection of the structure when equal forces are applied to each floor. [20%] 

(e) If the earthquake generates motion x = Xsinwt , use the approximate mode 

vector from part (d) to estimate the displacement of the top floor when the frequency of 

excitation is half the lowest natural frequency (i.e. w = WI /2). Comment on the 

sources of error in your estimate. [25%] 
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Three masses m, 2m and m are connected together and to fixed supports by 

springs of stiffness k, as shown in Fig. 2. A spring of stiffness Ak connects the outer 

two masses. Each mass can move in the horizontal direction only, without rotation. 

Small displacements from equilibrium are denoted by the coordinate vector 

[Yl Y2 Y3f· 

(a) Write an equation for the potential energy for small horizontal vibration of 

the system, and hence find the stiffness matrix. [20%] 

(b) Explain how symmetry can be exploited to find one natural frequency 

immediately, and to recast the remaining problem in terms of two degrees of freedom. 

Hence find all the natural frequencies and corresponding mode shapes. [55%] 

(c) Explain the influence of A on the sequence of the natural frequencies. 

What value of A makes two of the frequencies equal? If you built a physical system 

like this, would you in fact expect to find two equal frequencies? Justify your answer. [25%] 

Yl Y2 Y3 r r r 

k k 

m m 

Ak 

Fig. 2 

END OF PAPER 
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Part I1A Data sheet 


Module 3C5 Dynamics 


Module 3C6 Vibration 


DYNAMICS IN THREE DIMENSIONS 


Axes fixed in direction 

(a) Linear momentum for a general collection of particles mi: 

~ =F(e) 

where p =M VG, M is the total mass, VG is the velocity of the centre of mass and F<e) the 
total external force applied to the system. 

(b) 	 Moment of momentum about a general point P 
Q(e) =(rG - rp) x p + h G 

=hp+TpXP 
where Q(e) is the total moment of external forces about P. Here, h pand hG are the 
moments of momentum about P and G respectively, so that for example 

hp = "i,(ri - rp) x mih 

= hG + (rG -rp) xp 

where the summation is over all the mass particles making up the system. 


(c) 	 For a rigid body rotating with angular velocity OJ about a fixed point P at the origin of 
coordinates 

hp =frx(OJxr)dm= fOJ 

where the integral is taken over the volume of the body, and where 

A -F -E 1 	 [ COx ]
f = 	 -F B -D , OJ = COy ,

[	
z 

r= [~l ' -E -D C 	 co 

and A = f(y2 + z2)dm B = f(z2 + x2)dm C =f(x2 + y2)dm 

D= fyzdm E=fzxdm 	 F= fxydm 

where all integrals are taken over the volume of the body. 

Axes rotating with angular velocity D 

Time derivatives of vectors must be replaced by the "rotating frame" form, so that for 
example 

p + Q xp=F(e) 

where the time derivative is evaluated in the moving reference frame. 

When the rate of change of the position vector r is needed, as in l(b) above, it is usually 
easiest to calculate velocity components directly in the required directions of the axes. 
Application of the general formula needs an extra term unless the origin of the frame is 
fixed. 
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Euler's dynamic equations (governing the angular motion of a rigid body) 

(a) 	 Body-fixed reference frame: 
A tV 1 (B - C) CO2 CVJ = Ql 

BtV2-(C-A)CVJWl = Q2 

C tV 3 - (A - B) WI CO2 = Q3 
where A, Band C are the principal moments of inertia about P which is either at a fixed 
point or at the centre of mass. The angular velocity of the body is (J) = [WI, CO2, CVJ] and 
the moment about P of external forces is Q = [Ql, Q2, Q3] using axes aligned with the 
principal axes of inertia of the body at P. 

(b) Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"): 

A .0 1 - (A OJ - C CVJ)!.h = Ql 

A .0 2 + (A OJ - C CVJ) Q} = Q2 


C tV3 = Q3 

where A, A and C are the principal moments of inertia about P which is either at a fixed 
point or at the centre of mass. The angular velocity of the body is (J) = [WI, CO2, CVJ] and 
the moment about P of external forces is Q =[Ql, Q2, Q3] using axes such that CVJ 
and Q3 are aligned with the symmetry axis of the body. The reference frame (not fixed 
in the body) rotates with angular velocity Q =["4, !.h, OJ] with Ql=Wl and !.h=C02. 

Lagrange's equations 

For a holonomic system with generalised coordinates qi 

where T is the total kinetic energy, V is the total potential energy, and Qi are the non­
conservative generalised forces. 
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VIBRATION MODES AND RESPONSE 


Discrete systems 

1. The forced vibration of an N-degree-of­
freedom system with mass matrix M and 
stiffness matrix K (both symmetric and 
positive definite) is 

Mi..+Kl..-[ 

where'y is the vector of generalised 
displacements and/is the vector of 
generalised forces. 

2. Kinetic energy 

1. tM · T ==-y y
2- ­

Potential energy 

1 t 
V=Zl..Kl.. 

3. The natural frequencies wn and 
corresponding mode shape vectors !!:(n) 
satisfy 

4. Orthogonality and normalisation 

(it (k) _ {O,
~ M~ - 1 , 

j;e k 
. kJ = 

j;ek 

j=k 

5. General response 

The general response of the system can be 
written as a sum of modal responses 

N 

l..(t) == 2:qj(t)!!:(j) = Uq(t) 
j-I 

where U is a matrix whose N columns are 
the normalised eigenvectors !!:(i) and qj can 
be thought of as the "quantity" of the jth 
mode. 

Continuous systems 

The forced vibration of a continuous system 
is determined by solving a partial differential 
equation: see p. 6 for examples. 

If·2dT=='2 u m 

where the integral is with respect to mass 
(similar to moments and products of inertia). 

See p. 4 for examples. 

The natural frequencies wn and mode 
shapes un (x) are found by solving the 
appropriate differential equation (see p. 4) 
and boundary conditions, assuming 
harmonic time dependence. 

The general response of the system can be 
written as a sum of modal responses 

w(x,t) = ~q/t) U j(x) 
j 

where w(x,t) is the displacement and qj can 
be thought of as the "quantity" of the jth 
mode. 
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6. Modal coordinates q satisfy 

q+ [diag(W7)] q == Q 

where 	~ =Uq and the modal force vector 

Q=U
t L· 

7. Frequency response function 

For input generalised force Ij at frequency 

wand measured generalised displacement 
Yk 	 the transfer function is 

N U .(n)Uk(n) 
H(j,k,w) == Yk == ~ 1 2 2 

Ij n",l wn -w 

(with no damping), or 

Yk ~ 
H(j,k,w)=-"", L.J 2 

U .(n)Uk(n) 
1. 2 

Ij n .. lWn + 2lWWn?;n - W 

(with small damping) where the damping 
factor ?;n is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

8. Pattern ofantiresonances 

For a system with well-separated resonances 
(low modal overlap), if the factor ut)uk (n) 

Each modal amplitude qj(t) satisfies 

.. 2 Qqj + Wj qj == j 

where Qj == JI(x,t) u/x) dm and I(x,t) is 

the external applied force distribution. 

For force F at frequency W applied at point 
x, and displacement w measured at point Y, 
the transfer function is 

w "un(x) un(Y)
H(x ,Y ,W) == - == L.J 2 2

F w-wn n 

(with no damping), or 

w " un(x) u" (y)H( )x'Y'W---L.J 2. 2
F n wn +2lWWn?;n- W 

(with small damping) where the damping 
factor ?;n is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

For a system with low modal overlap, if the 
factor un(x) un(Y) has the same sign for two 

has the same sign for two adjacent adjacent resonances then the transfer 
resonances then the transfer function will 
have an anti resonance between the two 
peaks. If it has opposite sign, there will be 
no antiresonance. 

9. Impulse response 

For a unit impulsive generalised force 
Ij == 6(t) the measured response Yk is given 
by 

N U In)u {n} 
g(j,k,t) = Yk(t) = ~ 1 k sinwnt 

Wn=l n 

for t Ol!: 0 (with no damping), or 

N u .{n}u (n) 

g(j,k,t) ... 2: J k sinwnt e-wn\;n t 


W 

n-t n 

for t Ol!: 0 (with small damping). 

function will have an anti resonance between 
the two peaks. If it has opposite sign, there 
will be no antiresonance. 

For a unit impulse applied at t = 0 at point x, 
the response at point Y is 

g(x,y,t) _ ~ un(x) u,,(y) sinwnt 
n wn 

for t Ol!: 0 (with no damping), or 

" un(x) u,,(y). t -wnl;;nt 
g(X,Y, t) ... L.J SID wn e 

n wn 

for t:r: 0 (with small damping). 
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10. Step response 

For a unit step generalised force For a unit step force applied at t =0 at point 
o t < 0 x, the response at point y is 


Jj'" 1 t I!: 0 the measured response Yk is
{ 
h(x,y,t) =2: un(x) ~n(Y) [l-coscont]

given by n con 

N U .(n)Uk(n) .& 0 (·th d .)
h(j,k,t)-Yk(t)=2: J 2 [1-coscont] 10rtl!: WI no ampmg,or 

n=l con h(t} .... 2: un(x) Un(Y) [1-cosCOnt e-Wn~nt] 
for t I!: 0 (with no damping), or n co; 

N U .(n)Uk(n) [ ] for t I!: 0 (with small damping). 

h(j,k,t)- 2: J 2 l-coscont[Wn~nt 


n-l con 


for t I!: 0 (with small damping). 

Rayleigh's principle for small vibrations 

V ytKy 
The "Rayleigh quotient" for a discrete system is T- - t where y is the vector of 

~ M~ ­
generalised coordinates, M is the mass matrix and K is the stiffness matrix. The equivalent 
quantity for a continuous system is defined using the energy expressions on p. 6. 

If this quantity is evaluated with any vector~, the result will be 

(1) ~ the smallest squared frequency; 

(2) s the largest squared frequency; 

(3) a good approximation tocof if y is an approximation to y:(k). 

(Formally, ~ is stationary near each mode.) 
T 
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'GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS 


Transverse vibration of a stretched string 

Tension P, mass per unit length m, transverse displacement w(x,t) , applied lateral force 
f(x,t) per unit length. 

Equation of motion Potential energy Kinetic energy 

1a2w a2w V= !prf aw)2 dx (aw)2m-:::r - P-::z =- f(x,t) 2 T='2mf at dxJ, axat ax 

Torsional vibration of a circular shaft 

Shear modulus G, density p, external radius a, internal radius b if shaft is hollow, angular 
displacement e(x,t) , applied torque f(x,t) per unit length .. 

4 4Polar moment of area is J = (;n; / 2 Xa - b ) . 

Equation of motion Potential energy Kinetic energy 

a2e a2 e 
pJ -::::T - GJ-::z == f (x,t) v=!GJrf ae)2 dx 1 (ae)2

2 J, ax T='2pJf at dxat ax 

Axial vibration of a rod or column 

Young's modulus E, density p, cross-sectional area A, axial displacement w(x,t) , applied 
axial force f(x,t) per unit length. 

Equation of motion Potential energy Kinetic energy 


a2w a2w 1 (a)2 1 (aw) 2
pA-:::r - EA-::z = f(x,t) V= 2EAf ;: dx T='2pAf at dxat ax 

Bending vibration of an Euler beam 

Young's modulus E, density p, cross-sectional area A, second moment of area of cross­
section I, transverse displacement w(x,t) , applied transverse force f(x,t) per unit length. 

Equation of motion Potential energy Kinetic energy 

a2 a4w w 1 (aw) 2pA-:::r+ E1--::-::r= f(x,t) V- ~ <Ix T='2 pAf at dxat ax ElI( ~:~r 
Note that values of I can be found in the Mechanics Data Book. 
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