ENGINEERING TRIPOS PART IIA

Friday 26 April 2013 9.30to 11

Module 3D4

STRUCTURAL ANALYSIS AND STABILITY
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
Graph paper CUED approved calculator allowed

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 (a) Figure 1 shows a beam over three spans. The beam is continuous over the
supports, and the left and centre spans each contain a pin. The left span is loaded by three
concentrated forces,

(i) Derive the influence line for bending moment at location A. [30%]
(ii) Determine the bending moment at A due to the loading shown. [20%]
(b) Figure 2 shows a frame consisting of three members that are rigidly connected
at B. The connections A, C and D are built-in. The uniform flexural stiffness of each
member is EI = 5 x 10* kNm? and axial stiffnesses can be assumed to be infinite. The
beam AB carries a uniformly distributed load w = 10 kNm™!. The stiffness matrix for
beam bending is given in Fig. 3.

(i) Calculate the rotation of the connection B. [30%]

(i) Calculate the bending moments in the three members at sections

adjacent to connection B and sketch the bending moment diagram. [20%]
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Fig. 3: Beam stiffness matrix
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2 (a) The thin-walled cross-section ABC shown in Fig. 4(a) has a uniform
thickness ¢, Young’s modulus E and shear modulus G.

(i) Calculate the torsion constant of the cross-section. [10%]

(ii) Calculate the principal second moments of area of the cross-section. [60%]

(b) Figure 4(b) shows a cantilever of length L with a cross-section as shown in
Fig. 4(a). A stiff plate is welded to the tip of the cantilever, to which a vertical force
F is applied, acting downwards at an offset of 2b from the vertical leg of the cantilever
cross-section as shown.

Calculate the elastic deflection at point B at the cantilever tip and the torsional
rotation due to the applied force. [30%]
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3 (a) A steel beam has a thin rectangular cross-section with the dimensions
illustrated in Fig. 5a. The supports are simply supported with respect to both major and
minor axis flexure, and prevent any twist rotation about the longitudinal axis at the ends.
Self-weight may be ignored.

(i) Determine the magnitude of the equal-and-opposite major axis end
moments that will cause lateral-torsional buckling.

(i) Briefly explain what is meant by warping and explain the role played by
resistance to warping in determining the critical moment for lateral-torsional
buckling of I-beams.

(b) The mechanism illustrated in Fig. 5b consists of two rigid rods of length L
connected by a linear spring which has stiffness & and unstressed length +/2L. It is loaded
by a vertical load P at the central hinge.

(i) By considering the total potential energy, determine the positive
downward load P = P, at snapthrough and the two corresponding equilibrium
values of the angle .

(ii)  Sketch the total potential energy function as a function of @ at P = P,,.

(iii) Explain why a Rayleigh-Ritz approach to this problem would be

unproductive.

[25%]

[25%]

[30%]

[10%]

[10%]
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Fig. 5
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4 The subframe shown in elevation in Fig. 6 consists of four horizontal beams with
356 x 127 x 33 UB section connected to a vertical 203 x 203 x 86 Universal Column, with
support conditions as shown. The joints between beams and columns at B and E are fully
rigid. Each beam is 6 m long and the column is 3 m high. All webs are in the plane of the
diagram and all deformation out of the plane of the diagram is prevented. A vertical load
P is applied at B. Ignore self-weight. A graph of s and c stability functions is provided in
Fig. 7.

(a) Determine the effective length of the column for major axis elastic buckling,
and the corresponding critical axial load in the column. [40%]

(b) Determine the relative magnitudes of the rotations at B and E as the subframe
undergoes elastic buckling, and sketch the buckling mode shape. [20%]

(c) Explain why the lack of rollers at support A is crucial to the calculation of the
elastic critical load. Describe how such a support condition could be achieved in practice
in a multi-storey building. Explain how your approach to the problem would change if
supports A and C were both on rollers. [20%]

(d) Assuming the column is made of steel with 355 MPa yield stress, compare the
elastic buckling load computed in part (a) with the axial plastic capacity of the column.
Describe briefly how the elastic and plastic capacities may be combined to produce a
design axial load capacity, and without further calculation, provide a rough estimate for
the design axial load capacity of the column. [20%]
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Fig. 7: Graphs of s and c stability functions. P is the axial load and Ff is the Euler load.
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The product sc is also shown (dashed).
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