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ENGINEERING TRIPOS PART IIA 


Thursday 2 May 2013 9.30 to II 

Module 3MI 

MATHEMATICAL METHODS 

Answer not more than three questions. 


All questions carry the same number ofmarks. 


The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

Attachment: 

3MI data sheet (4 pages). 

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS 

Single-sided script paper Engineering Data Book 
CUED approved calculator allowed 

You may not start to read the questions 
printed on the subsequent pages of this 
question paper until instructed that you 

may do so by the Invigilator 
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(a) Explain what is meant by "a symmetric matrix A is positive definite". [10%] 

(b) For what range ofs is the matrix A positive definite, where 

[15%]
A = l~ ~ =~l ? 

-1 -s 1 

(c) For the case s = 0.5, express A in the form 

A = LLt 

where L i~ a lower triangular matrix with positive diagonal elements. [25%] 

(d) Show that a symmetric matrix A is positive definite if, and only if, all of its 
eigenvalues are positive. [25%] 

(e) For any positive definite symmetric matrix A, show that A can be written in 
the form 

where the symmetric matrix B is negative definite. [25%] 

2 An engineer is designing a solid cylindrical heat sink of height H and diameter 
D to be mounted on a thermally insulated surface, as shown schematically in Fig. 1. 

D 

H 

Fig. 1 
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The objective is to maximise the rate of heat transfer to the surrounding air. The 
rate of heat transfer is proportional to the exposed surface area of the cylinder A. The 

mass M of the cylinder must not exceed a specified maximum value M max' For 
acceptable structural stability of the cylinder the height-to-diameter ratio R = HID must 

not exceed a specified maximum value Rmax' Space constraints limit permissible values 
of D to the range 0 < D ::; Dmax' 

(a) Show that a suitable objective function to be minimised is 

I(D, R) =-CD2
( R +-;}) 

where C is a constant. [10%] 

(b) Express the constraints that apply in terms of D and R. [10%] 

(c) By considering the gradient of the objective function, show that there can be 
no unconstrained minimum for this problem. [15%] 

(d) Assuming that the constraint on M is active at the minimum, reformulate 
the task as a univariate constrained minimisation problem in terms of D. What 
condition must be met by the specified values of Rmax and Dmax so as not to preclude 
the possibility that the constraint on M is active? [20%] 

(e) By considering appropriate 
unconstrained minimum exists for this 

conditions. 

optimality criteria, determine whether an 
univariate problem, and, if so, under what 

[20%] 

(f) Using your findings from the earlier parts of the question, set out the 
possible solutions to this minimisation problem and explain how they depend on the 

specified values of Mmax' Rmax and Dmax· [25%J 
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3 The enrichment of uranium is defined as the ratio (kg per kg) of the mass of the 

isotope U-235 to the total mass ofuranium. 
A uranium enrichment plant is fed with F kg of natural uranium, which has an 

enrichment xI of 0.00715. The plant is to produce 1 kg of product with an enrichment 

xp of 0.035, and in doing so will produce W kg of waste with enrichment xW ' where 

Xw < XI < xp' 
Simple conservation ofU-235 and ofuranium requires that 

F l+W and xIF=: xp+xwW 

where XI and xp are fixed at the values given above. 

The cost per unit mass of the product Cp is given by 

Cp = CIF + Cs[F In( xI) In( xp)- Wln(xw)] 

where CI is the cost per unit mass of the feed, Cs is cost of running the plant per unit of 

'separative work' and the separative work is given by the expression in square brackets. 

(a) The plant engineer wants to minimise Cp by choosing appropriate values 

for x W ' F and W. Formulate this task as an equality constrained optimisation problem 

in standard form. [10%) 

(b) Although this problem can be solved by eliminating control variables using 
the constraint equations, it is much easier to solve it using the method of Lagrange 
multipliers. Find appropriate values of the Lagrange mUltipliers, and, hence, show that 
at the optimal solution 

[60%) 

(c) Find the optimal values of XW ' 

C 
F and W if ---L =: 1. 

Cs 
[20%) 

(d) 
optimum. 

Discuss the significance of the values of the Lagrange mUltipliers at the 
[10%) 
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4 (a) Explain what is meant by the term a limiting distribution for a finite state 
space Markov chain. [lO%J 

(b) Describe the properties of the Markov chain under which you would expect 
a limiting distribution not to be achievable in practice. [20%J 

( c) A system X can exhibit three states (a, b, c). The system undergoes a series 
of transitions through states Xo,Xl , X 2 , ... whereby at each stage of the process: 

(i) the probability that state a changes to state b is 114 and the probability 
that it changes to state c is 114; 

(ii) the probability that state b changes to state a is 1/8 and the probability 
that it changes to state c is 3/8; 

(iii) the probability that state c changes to state a is 1/4 and the probability 
that it changes to state b is 3/4. 

Find the transition matrix P that governs the process. [10%] 

(d) Find the limiting distribution and show, carefully, that it will be attained. [40%J 

(e) Explain what is meant by a limiting distribution being in dynamic balance 
and show that the limiting distribution found in (d) is in dynamic balance. [20%] 

[Y ou may quote, without proof, the results that the sum of the eigenvalues of a matrix is 
equal to the sum of the diagonal terms and that the product of the eigenvalues is equal to 
the determinant.] 

END OF PAPER 
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OPTIMIZATION 

DATA SHEET 

1. 	 Taylor Series Expansion 

For one variable: 


* * * 1 *2 * 
f (x) = f (x ) + (x - x ) 1'(x ) + "2 (x - x ) f"(x ) + R 

For several variables: 

* *T * 1 *T * * f(x) = f(x )+Vf(x) (x-x) + "2(x x) H(x )(x-x) +R 

where 

(jf 

aXl 

gradient V f(x) = 
af 

aX n 

and hessian H (x) = V(Vf(x» = 

(j2f 

2 ax1 

(j2f 

aXn ax, 

H (x*) is a symmetric n x n matrix and R includes all higher order terms. 

2. 	 Golden Section Method 

f(x) 

A 

I1x 
d-l1x = d-l1x 

11; =0.382 

B D 

(a) Evaluate f(x) at points A, B, C and D. 

(b) 	If feB) < fCC). new interval is A- C. 

If feB) > f( C), new interval is B - D. 

If feB) = fCC), new interval is either 

A- Cor B-D. 

(c) Evaluate 	f(x) at new interior point. If 

not converged, go to (b). 

x 
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3. 	 Newton's Method 

(a) Select starting point Xo 

(b) Determine search direction d k = - H(xk)-l Vj(xk) 

(c) Determine new estimate xk+l = xk + dk 

(d) Test for convergence. If not converged, go to step (b) 

4. 	 Steepest Descent Method 

(a) Select starting point Xo 

(b) Determine search direction dk = -Vj(x )k 
d[dk(c) Perform line search to determine step size cxk or evaluate cxk = 

d[H(xk)dk 
(d) Determine new estimate Xk +1 = xk + cxkdk 

(e) Test for convergence. If not converged, go to step (b) 

5. 	 Conjugate Gradient Method 

(b) Determine new estimate x + = x k + akdkk	 l 

(d) Determine search direction dk +1 = -Vj(xk +1) + fikdk 

dk 
T 

+1 Vj(Xk+1)
(e) Determine step size cxk + , = 

T 

d k + l H(xk+,) d k+! 


(f) Test for convergence. If not converged, go to step (b) 

6. 	 Gauss-Newton Method (for Nonlinear Least Squares) 

If the minimum squared error of residuals rex) is sought: 

m 

Minimise j(x) = L rj\x) = r(x/ rex) 
i = I 

(a) Select starting point Xo 

(b) Determine search direction dk = - [ J(xk/J(xk) r' J(xk/ r(xk ) 
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where lex) = = 

(c) Determine new estimate Xk +1 = x + d kk 

(d) Test for convergence. If not converged, go to step (b) 

7. Lagrange Multipliers 

To minimise f(x) subject to m equality constraints hi(x) = 0, i = 1, ... , m, solve the sys­

tem of simultaneous equations 

Vf(x*) + [Vh(x*) {t. = 0 (n equations) 

h(x*) = 0 (m equations) 

where t. = [A j , ... , Am] T is the vector of Lagrange multipliers and 

8. Kuhn-Tucker Multipliers 

To minimise f(x) subject to m equality constraints hi(X) = 0, i = 1, ... , m andp inequal­

ity constraints gi(x) 5 0, i = 1, ... , p, solve the system of simultaneous equations 

Vf(x*) + [Vh(x*) {t. + [Vg(X*)]TJ..t = 0 (n equations) 

h(x*) = 0 (m equations) 

V i = 1, ... , p, f.ljgj(x) = 0 (p equations) 

where t. are Lagrange multipliers and J..t 2: 0 are the Kuhn-Tucker multipliers. 
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9. Penalty & Barrier Functions 

To minimise I(x) subject to p inequality constraints g/x) ::; 0, i == 1, ... , p, define 

where P(x) is a penalty function, e.g. 

p 

P(x) == L (max [0, gj(x) J)2 
i = 1 

or alternatively 

where B (x) is a barrier function, e.g. 

p 1 
B(x) == L-­

i= I gi(x) 

Then for successive k = 1,2, ... and Pk such that Pk > 0 and Pk+l > Pk' solve the prob­

lem 

minimise q(x, Pk) 
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