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2014 IIA 3D5 - Water Engineering Dr D. Liang 
 

1. 
 (a.i) The total volume of water generated by the 8-hour rain at the catchment outlet is:  
    000,904,41360042090240520930860250   m3 
  This should be equal to the volume of the rainfall.  
      000,904,41104147 3  A  
     A = 4.99×108 m2 ≈ 500 km2 
 (a.ii) 
  According to the unit hydrograph theory:  

Duration (h) 0-4 4-8 8-12 12-16 16-20 20-24 24-28 28-32 
Total discharge due to 

the 8-hour rain 
250 860 930 520 240 90 20 0 

Discharge due to 
4-hour 7 mm/h rain 

250 360 210 100 40 10 0.0 0.0 

Discharge due to 
4-hour 14 mm/h rain 

0 500 720 420 200 80 20 0.0 

 
The first 4-hour discharge, 250 m3/s, is entirely due to the 7 mm rain, because the 14 
mm rain has not fallen yet.  For linear catchment, if the rainfall intensity doubles, 
then the discharge also doubles.  Hence, a 4-hour 14 mm rainfall will generates 500 
m3/s discharge in the first 4 hours.  Based on this argument, the 14 mm/h rain 
occurring at 4-8 hours contributes 500 m3/s discharge to the total discharge at 4-8 
hours.  The total discharge at 4-8 hours is 860 m3/s, so the 7 mm/h rain occurring at 
0-4 hours contributes (860-500) = 360 m3/s discharge at 4-8 hours.   

 (a.iii)  
The 7 mm/h rain occurring at 0-4 hours generates 360 m3/s discharge at 4-8 hours, so 
the 14 mm/h rain occurring at 4-8 hours shall generate 720 m3/s discharge at 8-12 
hours.  Because the total discharge at 8-12 hours is given to be 930 m3/s, the 7 mm/h 
rain occurring at 0-4 hours shall be responsible for the (930-720)=210 m3/s discharge.  
 
Following this argument, the total discharge can be split as shown in the above table. 
Based on the discharge variation due to the first 4-hour rainfall, the 4-hour unit 
hydrograph is as follows:  

Duration (h) 0-4 4-8 8-12 12-16 16-20 20-24 Total 
Discharge due to 

4-hour 7 mm/h rain 
250 360 210 100 40 10 970 

Discharge percentages 26 37 22 10 4 1 100 
 (a.iv)  
  The infiltration rates after 2 hours:  

    29.126206 24.0
0   eeffff tK

cc
f  mm/h 

If there is plenty of water supply, the infiltration rate will decrease to the following 
value after 4 hours:  

    83.86206 44.0
0   eeffff tK

cc
f  mm/h 

Both values are bigger than the rainfall intensity in the 2nd 2 hours, so no runoff is 
generated by the 2nd two-hour rain.  
The total infiltration in the first two hours is:  
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       3.311
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Excess rainfall in the first two hours is  
20×2-31.3 = 8.7 mm 

This value times the catchment areas gives the total volume of the runoff: 
63 10500107.8    = 4.35 × 106  m3 

 
Need to construct the 2-hour unit hydrograph of the 4-hour one.  

  Construct the S curve based on the 4-hour unit hydrograph:  
   Time (hour) 0 2 6 10 14 18 22 26 
   Runoff (%) 0 26 63 85 95 99 100 100 
  Find the runoff proportions due to a two-hour uniform rainfall.  
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 Read from S curve:  
 Time (hour) 0 1 3 5 7 9 11 13 15 17 19 
 S-curve value 0 14 36 55 70 81 89 93 96 98 100 
 Shift S-curve by 2 hours 0 14 36 55 70 81 89 93 96 98 
2-hour hydrograph 0 14 22 19 15 11 8 4 3 2 2 

 
The peak flow occurs at 2-4 hours, during which 22% of runoff volume is discharged. 
The peak discharge is then:  

133
36002

%221035.4 6





 m3/s 

 (b) In Q=CiA, the total rainfall, rather than the excess rainfall, should be used, and Q is 
the maximum flow rate.  The runoff coefficient takes into account the infiltration and retention loss, 
etc. The urban areas are more impervious and smoother than the rural areas, hence less infiltration 
and faster flow.  The urban drainage system also helps carry the rainwater away as fast as possible.  
 
In answering this question, we do not consider the storm water storage facility in cities.  



 3

2 (a.i) Wetted perimeter: 44.12225.129.8 P  m 
  Area:     69.1225.125.125.19.8 A  m2 
  Hydraulic radius: A/P = 1.02 m 

  Manning formula: 13.4002.1
025.0

11 6/16/1  hR
n

C  

  Chézy formula: bhSRCU  ,   bh SRACUAQ   

    00167.0
02.1

1

13.4069.12

211
22



















h
b RAC

Q
S  

 
 (a.ii) 
  Water surface width:  4.11225.19.8 B  m 

  Flow speed:  65.1
69.12

21


A

Q
U  m/s 

  50.0

4.11

69.12
81.9

65.1





B

A
g

U
Fr <1, so the flow is subcritical.  

 
 (b.i) 
  The flow is non-uniform, but steady.  Based on gradually-varied flow equations:  

   
22 11 Fr

S

Fr

SS

dx

dh bfb







  

  The Froude number at the entrance is:   40.1
8.081.9

8.013.3





gh

U
Fr  

So, dh/dx < 0 at the entrance.  As the water depth decreases, Fr becomes even 
greater than one. 
(On the contrary, if the flow at the entrance is subcritical and the bed is frictionless, 
then the water depth, as well as the water level, will increase.) 

 
 (b.ii) 

  

3

22 1
1

005.0

81.9

13.3
1

005.0

1
hh

hFr

S

dx

dh b

















  

   dxdh
h

005.0
1

1
3







   

Integrate on both sides:  Cx
h

h  005.0
2

1
2

 

When x = 0, h = 0.8. So,   C=1.58 

The relationship between h and x is: 58.1005.0
2

1
2

 x
h

h  

This is equivalent to:    05.0)58.1005.0( 23  hxh  
 

  This equation can be derived more easily by using 
bS

g

U
h

dx

d











2

2

. 

  It can also be derived by writing Bernoulli’s equation between the entrance and a  
downstream section.  
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 (c.i) 
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  The positive characteristic starting from O divides the affected/unaffected regions. 

  Positive line OO1 is straight: OO ghU
dt

dx
  

    0.481.91
0

01000





ot
  =>  190ot  s 

  Hence, the water depth 1 km upstream of the river mouth remains 4 m at 0-190 s.  
 
  Draw negative line through line B, according the –ve relationship: 

    481.92105.481.92 BU  => 922.0BU  m/s 

  Positive line BB1 is straight: BB ghU
dt

dx
  

    05.481.9922.0
20

01000





bt
  =>  206bt  s 

  So, the water depth rises from 4 m to 4.05 m between 190 s and 206 s.  
  The duration of this rise is: 16 s 
 
 
 (c.ii) 
  Draw negative line through line C, according the –ve relationship: 

    481.921481.92 CU  => 1CU  m/s 

  Positive line CC1 is straight: CC ghU
dt

dx
  

    .481.91
40

01000





ct
  =>  230ct  s 

  So, the water depth drops from 4.05 m to 4.0 m between 206 s and 230 s.  
  The duration of this rise is: 24 s 
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3 (a.i) 
  The total roughness height: 059.005.0003.03'''  sss kkk  m 

  Chezy coefficient:   h
h

k

R
C

s

h 





 








 
 39.203ln8.7

059.0

0.12
ln8.7

0.12
ln8.7  

  Chezy formula:  bhSRCU    =>  5.15.0 hSCq b   

      5.15.0004.0)39.203ln(8.72 hh   
      85.0h  m is the solution 
 

  Velocity:   35.2
85.0

2


h

q
U  m/s 

  Grain-related roughness: 009.0003.03' sk  m  

  Grain-related Chezy factor: 86.54
009.0

85.00.12
ln8.7

'

0.12
ln8.7' 






 








 


s

h

k

R
C  

  Grain-related bed shear stress: 0.18
86.54

35.2
9810

'
'

2

2

2

2


C

U
gb   Pa 

  Grain-related Shields parameter: 

       37.0
1031000265081.9

0.18'
'

3






 dg s

b




  

 

  89.75
10

)165.2(81.9
103

)1(
3/1

12
3

3/1

2* 





 







 
 




sg

dd  

  Critical Shields parameter:    046.002.0exp1055.0
2.11

30.0
*

*




 d
dc  

  Transport stage parameter: 04.7
046.0

046.037.0'








c

cT



 

  Van Rijn:  87.0
89.75

04.7
053.0053.0

)1(
3.0

1.2

3.0
*

1.2

3


 d

T

dsg

qb  

    4333 1075.5103)165.2(81.987.0)1(87.0   dsgqb  m3/(m·s) 

  Bedload is:  5.126501075.5 4    kg/(m·s) 
 
 (a.ii) 

  At threshold motion condition:   055.0



dg

ghS

s

b




  

      055.0
1000265081.9

004.09810





d

h
 => dh  7.22  

  Chezy coefficient:  17.35
3

7.220.12
ln8.7

0.12
ln8.7 






 








 


d

d

k

h
C

s

 

  Chezy formula:  bhSRCU    =>  5.15.0 hSCq b   

      5.15.0004.017.352 h   =>  h = 0.93 m 

  So, the pebble size is:   041.0
7.22

93.0

7.22


h
d  m = 4.1 cm 
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 (b.i) 
  The cross-sectional area is 3 m2, and the velocity is 1 m/s .  
  This is a one-dimensional instantaneous-release problem. 

   






 








 


tD

tx

tD

M

tD

Utx

tD

AM
txc

xxxx
4

)1(
exp

4

3/

4

)(
exp

4

/
),(

22


 

   )s7200,m10000( txc 0.02 g/m3, so:  

   


























xxxx

DD

M

DD

M 2.272
exp

2.90272004

)720010000(
exp

72004

3/
02.0

2


 (1) 

   )s10800,m10000( txc 2 g/m3, so:  

   


























xxxx

DD

M

DD

M 8.14
exp

9.1104108004

)1080010000(
exp

108004

3/
2

2


 (2) 

  Divide two equations on the two sides:  

   























x

x

D

D

2.272
exp

8.14
exp

9.1104

2.902
100  => 



















xx DD

2.272
exp5.122

8.14
exp  

  Take natural log on both sides: 

   
xx DD

2.272
)5.122ln(

8.14
   =>  Dx = 53.5 m2/s 

  From equation (2): 

   










5.53

8.14
exp

5.539.1104
2

M   =>  M = 21314 g ≈ 21 kg  

 
 (b.ii) 

  886.5001.0
32

3
9810 


 bhb SgR  Pa 

  077.0
1000

886.5
* 


 bu  m/s 

  Analytical solution: 68.0077.05.186.5 LD  m2/s 
This is much smaller than the real value, because the analytical formula does not 
consider the lateral shearing caused by the side walls, the meandering of the river, 
the effect of secondary flows, etc.  

 
 (c) 

The drag coefficient for small particles is inversely proportional to the Reynolds 
number (Stokes flow), while it is a constant for large particles. The drag force is 
balanced by the submerged weight of particles.  
 

For small particles:    223
s

s
s wd

dw
d 

    =>  2dws   

  For large particles:     223
ss wdd     =>  dws   
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4.  (i) Apply Bernoulli equation between A and X to find Ux: 

    lf
XX

X
AA

A HH
g

U

g

P
z

g

U

g

P
z 

22

22


 

  PA is atmospheric pressure at reservoir = 0, and UA is negligible. 
  Local losses at entry and at two bends between A and X: 

 
g

U

g

U

g

U
H XX

l 22
25.025.05.0

2

222

   

  Pressure head at X:  23.12
9810

120000


g

PA


 m 

  Relative roughness:  0006.045027.0 Dks  

  Assuming fully turbulent flow, the Moody Diagram gives λ = 0.0173, thus 

   
g

U

g

U

g

U XXX

2
225.05.0

245.0

500
0173.0

2
23.127500100

222







   

    43.3XU  m/s 

  Check the Reynolds number: 6

6
1035.1

1014.1

45.043.3
Re 







DU X
X  

  From Moody Diagram: λ = 0.0178  
  Re-compute with this revised friction factor: 

   
g

U X

2
2

45.0

500
0178.023.127500100

2







   

   39.3XU  m/s 

  Check the Reynolds number: 6

6
1034.1

1014.1

45.039.3
Re 







DU X
X  

  From Moody Diagram: λ = 0.0178 (accept the previous value) 

  Q = 


 39.3
4

45.014.3

4

22

X
X U

D
0.54 m3/s 

  Full mark will be given if simply testing Q in the solution. 
 (ii) Apply Bernoulli between reservoirs:  
   lfBA HHzz   

   
g

zB 2

39.3
125.065.0

45.0

1500
0178.0100

2







   

   5.63Bz  m, which is 36.5 m below zA.  
 (iii) The sketch below qualitatively shows the positions of the energy grade line and the 

hydraulic grade line. 

Reservoir A

Reservoir B 
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  Apply Bernoulli equation between X and Y to find zY (noting UX and UY): 

   lf
YY

Y
XX

X HH
g

U

g

P
z

g

U

g

P
z 

22

22


 

   
g

zY 2

39.3
25.025.0

45.0

300
0178.01.1023.1275

2







   

   1.90Yz  m 
  The minimum excavation depth is: 93-90.1 = 2.9 m 

Negative pressure is avoided, because it may induce the pollutants in the ground 
water to be sucked into the pipeline at joints and cracks.  

 
 (iv) Develop the system curve.  
  Static head = 100 – 63.5 = 36.5 m 

  Losses in head = 
g

U

2
125.065.0

45.0

1500 2







   

  λ is determined according to Re = 


UD
 and 0006.0Dks  

   

Q (m3/s) 0 0.2 0.4 0.6 0.8
U (m/s) 0.00 1.26 2.52 3.77 5.03
Re 0.0E+00 5.0E+05 9.9E+05 1.5E+06 2.0E+06
λ 0.0182 0.0179 0.0178 0.0177
Losses 0.00 5.14 20.22 45.26 80.04
System 36.50 41.64 56.72 81.76 116.54  
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  From the diagram: Q = 0.49 m3/s.  
 
 (v) If the pump is installed close to reservoir A, then the position of the pump is high 

and at the downstream end of the pipe. Then, water is mainly sucked into Reservoir 
A, rather than being pushed. Cavitation will occur on the inlet side of the pump and 
along the pipeline upstream of the pump, which actually prevents flow from taking 
place.  


