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4F2 SOLUTIONS

Questiog(a) From the notes, dropping the s dependence to simplify the notation,
u= Ky = K(Pyw+ Ppu)

=u = (I — KPyp) 'KPyw

=z = Phw+ Ppu= (P11 + Pi2({ — Kng)“lKPgl)wA
But K(I — PpK) ' =~ K Pyy)~ 1K, therefore

Fi(P(s), K(s)) = Puu(s) + Pra(s)K (s)(I — Paa(s)K () ™" Par ().
(b)(i) This is the stadard Ha optimal control framework with state feedback. The CARE is
XA+ ATX +CFCy — XByBf X =0.

a b
x=[22]
Substituting the values for A, C1, By for the system leads to

a0 [0 ol el i a] - eI 2 &)

This leads to the system of equations

Since X is symmetric let

4-p*=0
a—bd=0
2b —d? = 0.

The first equation implies that b = +2. Substituting into the third equation shows that only b = 2 leads to a
real solution, with d = £2. Substituting into the second equation leads to a = 4. The two real symmetric

solutions of the CARE are

4 2 -4 2
Xlz[Qz}anngz[z w2}.

(b)(ii) u = ~Bf Xz. Substituting gives two controllers

uy=-[0 1][;1 g}zz[——.‘z -2 |z

up=-1[0 1}{;4 ;9‘2}93:[—2 2 |z

(b)(iii) The closed loop state space equations with controller u; are

o[ 4]+ [ o (800 0= & Ao 3]s

2 0]ee 212 2= 2 8]
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The closed loop system is stable if the roots of

0 171\ .
det<)\1——{_2 ~2})«-/\ 42X+ 2

have negative real parts. The roots are A = —1 + j, therefore u; is stabilizing.

Likewise the closed loop system for us is

. ] 0 1 1
x—[_z 2}x+[1}w
. 2 0
-2 2| ®
The characteristic polynomial this time is A2 — 2\ + 2 = 0 with roots A =12 j. Therefore the closed loop

system with controller us is unstable.

(b)(iv)
o= 8]0 4 (3)- BRI
Therefore
FiP(s), K(5)) = [ i }
242542
(b)(v)
K(s) Sg%lﬂizing IFi(P(s), K(s))l, = \/2”7”“06(BTX131),
where
LRI O
Therefore

min - [|F(P(s), K(s))[l, = 2v/2m.
K (s) stabilizing
Questionﬁ(a)(i) Notice that %—‘t/(x,t) = p(t)z? and %(m,t} = 2p(t)z. Substituting into Isaacs equation
leads to

()2 (22 _
p(t)z +Illvlgﬂ>g151€1§(u w” + 2p(t)z(z +u+w)) = 0.

Rearranging, this simplifies to
(B(t) + 2p(t))2* + max(2p(t)zw — w?) + min(u? + 2p(t)zu) = 0.
wER u€ER

The boundary condition is V(xz,1) = 2.
(a)(ii) The minimum with respect to u occurs at u = —p(t)z, with min,(u? + 2p(t)zu) = —p(t)%22. The
maximum with respect to w occurs at w = p(¢)z, with max,(~w? + 2p(t)zw) = p(t)%z?. Substituting into
Isaacs equation gives

(B(t) + 2p(t))x? + p(t)%2? — p(t)2z? = 0.
The Riccati equation is therefore

p(t) +2p(t) = 0.

Notice that the equation is degenerate, in the sense that all quadratic terms have been canceled and what

remains is a linear differential equation.
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(a)(iii) The solution of the linear differential equation
p(t) = —2p(t)
has the form p(t) = e~ 2'p(0). The only problem is that we do not know p(0). However
Viz,1) = p(1)z? = Ji(z) = 2°.
Therefore, p(1) = 1, which implies that p(0) = 2. Therefore,
Vg, t) = e 2142,

(b)(i) Isaacs equation is
ov av ov
—(z,t) + —— () in = -
ot (2,1) w?{lﬁiu Iz (2,t)w +uen['l—uf,l) dz (z,8)(1 + Jzfju =0
with boundary condition V(z,1) = 1 — %
(b)(ii) Notice that for the proposed solution
Vizg, 1) =1—-2z220"D =1 - 22 = Jy(2).
Therefore the proposed solution satisfies the boundary condition. Moreover,
ov
ot
Substituting into Isaacs equation we get

2z%e 21 1 max <~2xe“2<‘“1)> w+ min (-2306‘2““1)) (1+ |z])u = 0.
wef—1,1] u€[~1,1]

(z,t) = 222721 and ?—Y—-(:c,t) = —2ge2(t-1)

dx

As suggested, distinguish cases z >0, z =0, z <0.

2ze—2(t-1) ifz >0, forw=—1
if z = 0, for w arbitrary
—2z2e~ 2= if £ < 0, for w = 1.

o

max (—Qxe'g(t‘l)> w =
wef—1,1]

—2xe 2-N(14+1) fzx>0, foru=1
mirlll <~2$6_2<t“1>> (I+zhu=< 0 if z = 0, for u arbitrary
uel-L1] 2ze~2(t=1)(1 — 7) ifzx <0, foru=-1.

Isaacs equation is trivially satisfied if z = 0. If z > 0 it becomes
902201 4 2pe2(t-1) _ 946~ 2((1 4 g} = 0.

OK. If z < 0 it becomes
9226~ 2(=1) _ 9ze~ 201 4 9ze= 2= (1 — z) = 0.

OK again!



