
Engineering Tripos Part IIB & EIST Part II FOURTH YEAR

Module 4F9: Medical Imaging & 3D Computer Graphics

Solutions to 2003 Tripos Paper

1. Ultrasound wave propagation

(a) k1 = ω/c1. [10%]

(b) The pressure on both sides of the boundary must be equal:

pi|x=0 + pr|x=0 = pt|x=0

⇒ A1 + B1 = A2

This gives us one equation relating A1, A2 and B1. [10%]

(c) The particle velocities, normal to the interface, must be equal at the boundary.

ui|x=0 + ur|x=0 = ut|x=0

The linear inviscid force equation is:
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and if we substitute the expressions for p given in the question we get:
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This gives us a second relationship between A1, A2 and B1. [30%]
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[20%]

(e) Solving the two relationships between A1, A2 and B1 together we can obtain
expressions for B1/A1 and A2/A1 in terms of ρ1, ρ2, c1 and c2. This leads to

R =
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)2

T =
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[30%]

Assessor’s comments: (Attempted by 31/42 candidates, average mark 11.2/20). This
question covered the bookwork describing the way an ultrasound wave crosses an inter-
face between two materials. Some candidates had a full understanding of the material
and gained high marks, but several were not able to remember the basic definitions
taught in the lectures.

2. Radon and X-ray transforms

(a) The three-dimensional radon transform maps a function f(x, y, z) to the set of its
integrals over planes perpendicular to unit vectors u at a distance s from the origin.

u

s

Rf(s, u) =
∫

r.u=s

f(r)dA

where dA is a small element of the plane perpendicular to u a distance s from the
origin, i.e. the plane defined by r when r.u = s.
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The X-ray transform maps a function onto the set of its line integrals. Consider a
line passing through a point with position vector x, with direction v.

vx

Pf(x, v) =
∫

r=x+λv

f(r)|dr|

Note: in any individual projection, using the X-ray transform, the direction of v is
fixed, and x varies such that x.v = 0. [20%]

(b) The X-ray transform is an integral along a line perpendicular distance s from the
origin. The function is spherically symmetric so the X-ray transform will not depend
on the direction of the line, it will only be a function of s. Let r be the distance
along the line. The X-ray transform therefore equals

Pf(s) =

+∞
∫

−∞

fdr

=

+∞
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=
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[40%]
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(c) The radon transform is an integral over a plane perpendicular distance s from
the origin. Let p and q be distances in perpendicular directions in the plane of the
integral. The radon transform therefore equals

Rf(s) =
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[40%]

Assessor’s comments: (Attempted by 10/42 candidates, average mark 10.3/20) This
question tested the candidates’ understanding of the X-ray and radon transforms.
Most candidates produced plausible definitions of the X-ray and radon transforms. In
the algebraic part of the question, all the candidates found the solution of the line and
surface integrals difficult. Some were not even able to formulate the expressions for
the integrals correctly.

3. Marching Cubes and Tetrahedra

(a) The volume of a tetrahedra is given by 1/3 base area times height. Each cube
thus contributes a volume of 1/48. There are 8 cubes so we have a total volume of
8 × 1/48 = 1/6. [25%]

(b) By symmetry, the solid edges form a cubic lattice. We therefore can consider the
following slice:

2 3

31

The length of the dashed sides is thus one unit. [30%]

(c) By counting from the diagram we see that there are 24 segments. [15%]
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(d) Each little tetrahedron, with side lengths of 1/2 and 1/
√

3, that contributes to
the volume has a base area of 1/(6

√
2) and a height of 1/

√
6. Its volume is thus

1/(36
√

3). There are 24 such segments, giving a total volume of 2/(3
√

3) = 0.385. [30%]

Assessor’s comments: (Attempted by 29/42 candidates, average mark 10.8/20). This
question covered the construction of 3D surfaces using the marching cubes and march-
ing tetrahedra algorithms. Candidates were generally able to solve the marching cubes
problem in part (a). They found the geometry in parts (b) and (c) surprisingly diffi-
cult because it required careful visualisation in 3D and an awareness of symmetry.

4. Shape Based Interpolation

(a) The diagram below shows the results of linear interpolation with a thick line at
the boundary.
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[25%]

(b) The diagram below shows the result of one dimensional shape based interpolation
with a thick line at the boundary.
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[35%]

(c) First we set up distance fields in each of the two slices that are provided.
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We then interpolate the distance fields to create a slice half way between the given
planes of data.

− − − −

−

−−−−

−

−

−−

−−

−

−−−−−− − −

−

−

−

−

−

−

−0.5 0 0 0 −0.5 −1

−2 −1.5 −0.5 0 0.5 0.5 1

−1.5 −1 −0.5 −0.50

−0.5

−0.5

The object is taken as every point with a value of zero or above.

This answer has been based on a sequence of the form (-3, -2, -1, 0, 1, 2, 3), with the
threshold just below zero. Other sequences, for instance (-20, -15, -10, -5, +5, +10,
+15, +20), resulting in slightly different answers, are also acceptable. [40%]
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Assessor’s comments: (Attempted by 12/42 candidates, average mark 10.8/20). The
first part of this question tested candidates’ understanding of shape-based interpola-
tion in 2D. The later part of the question addressed similar issues in 3D. Although
unpopular, this question resulted in a wide range of marks as those who understood
the principle behind the algorithm achieved high scores, whereas those with a muddled
understanding collected few marks.

5. Volume Rendering

(a) Volume rendering is the term used to describe the direct visualisation of a 3D
voxel array without explicit segmentation into surfaces. Rays of light (usually par-
allel) are cast through the volume where they are shaded and attenuated by the
individual voxels. The rays exiting the volume impinge on an image plane to create
the rendering, in a manner analogous to taking an X-ray. The colour and opacity
of the voxels are set using classification techniques, often heuristic in nature. The
volume may be re-oriented with respect to the image plane to construct views from
different viewpoints, clipping planes can be used to look behind occluding objects,
and the colours and opacities can be adjusted interactively to emphasize different
aspects of the volumetric data.

Compared with surface rendering, the advantages of volume rendering for volume
visualisation are:

• No need to explicitly extract surfaces — the difficult segmentation problem is
avoided.

• Ability to visualise more of the data set at a time: animation helps to disam-
biguate the renderings.

• Ability to interactively view different aspects of the volume by adjusting the
clipping planes and the material parameters.

The disadvantages of volume rendering are:

• A lot of parameters need to be set by trial and error (this can be construed
more positively as beneficial user interaction).

• Considerable computational expense each time you render.

• No geometric properties e.g. volume / surface area.
[25%]

(b) (i) Minimum intensity projection will show the vasculature. (ii) Maximum inten-
sity projection will show the cartilage. [20%]

(c) The area of box B is 80 × 80 = 6400mm2. To find the area of box A, the length
of the box is 80

√
2, and the width is 40/

√
2+80−40

√
2. Thus the area is 5851mm2.

So we choose box A.
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Box B

40 40
Box A

For no loss of information when resampling at 45◦ we require voxels 0.1/
√

2 mm
cubed. We therefore need a voxel array 1600 × 732 × 425 = 497, 760, 000, or about
475 megabytes of memory, at one byte per voxel. [30%]

(d) The memory required for the raw data is 91× 300× 400 = 10920000 bytes. The
required ratio is thus 497760000/10920000 = 45.6 [10%]

(e) Nearest neighbour, neighbourhood interpolation with a 3D Gaussian kernel,
neighbourhood interpolation with a 3D kernel shape based on the local shape of
the ultrasound resolution cell, radial basis functions, b-spline interpolation. [15%]

Assessor’s comments: (Attempted by 22/42 candidates, average mark 11.1/20). This
question was about volume rendering, and the practicalities of using traditional vol-
ume rendering algorithms to visualise 3D ultrasound data. Several candidates ignored
the wording of the question and discussed volume rendering exclusively in the context
of CT data. The numerical question about resampling inhomogeneous data onto a
regular voxel array was generally well done, and most candidates were able to suggest
interpolation algorithms as required in part (e).

6. Shadow Rendering

(a) The order of application is: first modelview matrix, then the projection matrix
then clipping. The modelview matrix determines the orientation and position of a
line with respect to the rest of the drawing, the project matrix determines the overall
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mode of viewing, usually either perspective projection or orthogonal projection, and
the global scale. The clipping determines the size of the volume of space to be
rendered, called the view volume. [20%]

(b)

1

6

10
x

a

Angle a = sin−1(1/5)

Length x = 6 tan(a) = 1.2247

This covers 1.2247 × 128/10 = 15.7 pixels. So the width of the sphere is 31 pixels. [20%]

(c)(i)

1

a

76.8
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Distance from sphere to viewpoint =
√

502 + 502 + 302 = 76.8

Angle a = sin−1(1/76.8)

Pixels along sphere radius = 6 tan(a) × 128/10 = 1.0

So the width of the sphere is 2 pixels in the shadow z-buffer. [15%]

(ii)

[15%]

(iii) The result depends on the positions of the near and far clipping planes used for
the shadow z-buffer. If the clipping planes are close together, but the sphere and
part of the plane is between them, then the shadow will be seen. If however the
planes are far apart then there will not be enough resolution in the shadow z-buffer
to separate the sphere from the plane behind it and no shadow will appear. Take,
for example, the case with the near clipping plane is at n = 3 and the far clipping
plane is at f = 78. For the z-buffer algorithm to resolve an object the size of the
sphere, we need to resolve a different z value for z = −77, so given

Zs =
f
(

1 + n

Zv

)

f − n
=

78
(

1 + 3

−77

)

75
= 0.999481

which implies 10 bits of resolution. Therefore we will not get a shadow at all, since the
z-value of the sphere is indistinct from that of the plane. Note that Zs is a non-linear
function of distance, with coarser quantization further from the viewpoint. [30%]
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Assessor’s comments: (Attempted by 19/42 candidates, average mark 10.3/20). This
question tested the candidates’ understanding of 3D graphical rendering and the use
of the shadow z-buffer. A few candidates had a surprisingly muddled view of the rôles
of the modelview and projection matrices. Most of them were able to come up with a
plausible value for the width of the image of the sphere, although some lost marks by
calculating its area instead. Answers to the last part of the question on the operation
of the shadow z-buffer were generally poor.

Richard Prager
May 2003
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