
Solutions to 4F11 Speech Processing, 2003

1. Speech Analysis

(a)(i) The source filter models makes a clear distinction between voiced and unvoiced
signals. In these cases the excitation source is either a noise or a sequence of pulses. [10%]

(a)(ii) The waveform of a voiced speech segment shows the periodic nature. This
is reflected in the spectrum as a ripple with peaks at multiples of the fundamental
frequency (F0). Further clear resonances are visible. In contrast the unvoiced signal
is noise-like and the associated magnitude spectrum does not reveal any periodicity.
Only weak and broad resonances can be observed. Comparing voiced and unvoiced
signals also exhibits a substantial difference in energy.

[25%]

(b)(i) A linear predictor tries to predict the value of the signal s at time n on the
basis of the past p signal values, where p is the predictor order. It does so by a
linear combination with the weight factors ai which are called the linear prediction
coefficients.

ŝn =
p∑

i=1

aisn−i

[15%]

(b)(ii) A least squares error criterion is used: The error signal can be computed as
the difference of the predictor output and the true signal value:

en = sn − ŝn = sn −
p∑

i=1

aisn−i

Thus for obtaining the optimal filter coefficients ai requires to take the derivative of

E =
∑
n

(
sn −

p∑

i=1

aisn−i

)

with respect the parameters aiand setting the derivative to 0. The minimisation of
the error signal is equivalent to minimising the expression
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∫ π

−π

P (ejωT )

P̂ (ejωT )
dωT

where ˆP (ejωT ) represents the LP power spectrum and P (ejωT ) is the speech power
spectrum (under the constraint that the overall energy is the same). A better match
is obtained for large values of the spectrum, i.e. the peaks, and less emphasis is given
to the matching of valleys. [25%]

(c) The source-filter model is outlined below:

with the vocal tract filter represented by an LP filter. In order to synthesise a speech
signal a selection is made whether the current signal is voiced or unvoiced. In the case
of a voiced signal a sequence of impulses on the basis of the fundamental frequency
is generated, in the unvoiced case a random noise signal is used. After multiplication
with a gain factor the signal filtered using the LP filter. In order to reflect the rapid
changes in the speech signal the parameters need to be updated every 10ms. The
limitations are

• A hard V/UV decision is invalid for example in the voiced fricative case →
mixed excitation.

• Neither random noise nor periodic pulses represent the true signal sources cor-
rectly.

• Nasals are not properly modelled with an LP filter

• F0 estimation or synthesis is difficult

• ...
[25%]

2. Speech Coding

(a) Design criteria are

• of the effective bit-rate, which may be variable or constant,

• the speech quality
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• the complexity of the encoding and decoding algorithms

• the delay incurred due to processing

• the generality for use on other types of audio signals
[20%]

(b) The factors are the assessment of intelligibility of the speech signal and the nat-
uralness. Techniques used to assess the quality of a speech coder are objective noise
measurements such as a segmental Signal-to-noise ratio or subjective listening tests.
For assessment of the quality of speech signals encoded with parametric techniques
only subjective evaluation is of importance. Here the Diagnostic Rhyme Test allows
to measure confusion between phones by asking whether for example hit or fit was
uttered. The more widely used Mean Opinion score tests mostly for naturalness by
requiring the assignment of scores from 1 to 5 to a particular speech sample. In both
tests it is unknown to the listener if the presented speech sample is encoded or not. [30%]

(c)(i) The parameters are the gain G, the fundamental frequency F0, a V/UV decision
and the parameters associated with the LP filter. The standard uses 5 bits for G,
6 bits for F0, 1 bit for V/UV and 42 bits for encoding the LP parameters (mixed
encoding of log-area-ratios and reflection coefficients). [15%]

(c)(ii) The above is a total of 54 bits , transferred every 180 samples at a sample rate
of 8000Hz: 8000

180
× 54 = 2400bit/s [10%]

(c)(iii) Another option to lower the bit-rate is to use quantisation of the individual
filter coefficients. The filter coefficients show strong correlation between each other.
In order to exploit the correlation between the individual filter parameters vector
quantisation can be used. In this a codebook is trained on a large training set of LP
parameter vectors using for example k-means clustering. This also requires the choice
of an appropriate distance metric. Especially for computing the distance between LP
parameter vectors the Itakura distance can be used. In encoding the centroid vector
nearest to the LP parameter vector is chosen and the index is transmitted. The coder
uses the same codebook and uses the centroid LP parameter vector decoding [25%]

3. Frontend Extraction for SPeech Recognition

(a) The desirable attributes are

• Reduce the raw bit rate to something manageable .

• Remove information that does not discriminate between words

• Retain all information that disriminates between words

• Transform feature vector to be suitable for the classifier being used.
[20%]

(b) The steps in producing an MFCC feature vector are:

• Pre-emphasis of the speech signal
This provides an attenuation of lower frequency components to compensate for
the tilt in the speech spectrum.
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• Block processing, i.e. taking a frame of the speech signal every 10ms.
This allows to use the assumption of quasi-stationary speech segments

• Windowing using a Hamming window of 25ms
This introduces less distortion (side-lobes) than a rectangular window.

• DFT of the windowed signal to obtain the magnitude spectrum

• Filtering using a triangular filterbank on the basis of the Mel scale. A typical
number of filters is 26.
This provides a smoothed representation of the spectrum while taking into ac-
count that the speech in lower frequency regions is perceptually more important.

• Take the log of the filterbank coefficients
This converts the multiplicative relationship between excitation and source into
an additive one.

• Take the inverse DCT of the log filterbank coefficients. Only retain a smaller
number of MFCC elements, a typical value is 12.
This steps computes the cepstral values, further smoothing the spectrum by
truncation. [35%]

(c) The delta and delta-delta coefficients allow to incorporate dynamic information
about neighbouring feature vectors in time into the current vector. Define a static
feature vector y ( for example 12 MFCCs as outlined in (b) ), then the delta param-
eters are computed by ∑D

τ=1 τ (yt+τ − yt−τ )

2
∑D

τ=1 τ 2

which is a linear regression using 2D data points. This yields 12 delta coefficients.
The delta-delta or acceleration coefficients are obtained by computing the regression
values on the first order differentials.

The encoding of temporal information into the feature vector is commonly used to
counteract the conditional independence assumption between subsequent observation
vectors, as used in HMMs.

The size of the feature vector is substantially increased (three-fold) using this tech-
nique, consequently increasing the computational complexity. [25%]

(d) This was not detailed in lectures. A selvction from the following points will obtain
full marks.

• Background noise nk is added to the signal

s̃k = sk + nk

• Most of the operations in (b) are linear filter operations in which case the prin-
ciple of superposition can be used to predict the change to the coefficients. This
is true for pre-emphasis, windowing, and DFT, and the filterbank. Up to this
stage the two parts of the signal are still additive.
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• The output of the filterbank is then passed through a log. This is non-linear so
the speech and noise can no longer be considered seperatly.

• The DCT means that all filterbank outputs affect one another. Thus if the
noise is band limited then only a limitred number of the filterbank valuse will
be corrupted, whereas all the cepstral values will be altered.

[20%]

4. Hidden Markov models

(a) The two systems are

• System (i)

log(p(y)) = log

(
1

(2π)
d
2 |Σ| 12

)
− 1

2
(y − µ)′Σ−1(y − µ) (1)

Number of model parameters d + d
2
(d + 1). Able to model unimodal data, but

with correlations in the feature vector. Calculation cost is O(d2).

• System (ii)

log(p(y)) = log

(
M∑

m=1

1

(2π)
d
2 |Σm| 12

exp
(
−1

2
(y − µm)′Σ−1

m (y − µm)
))

(2)

The number of model parameters is M(2d + 1)− 1. Able to model multi-modal
data, on-Gaussian data and to a limited extent correlations.

As the size of the feature vector increases, the full-covariance system increaes as
O(d2), for the multiple component system O(d). [35%]

(b)(i) Cross-word triphone systems makes the model to be used dependent on the
preceeding and following phones, as well as the current. Commonly used as the
articulators do not move instantly, so there is significant co-articulation. [15%]

(b)(ii) The problems are:

• how to construct models when there is no observed training data;

• how to obtain robust estimates of model parameters when there is little data.

Main attributes are:
Advantages

• No need to back-off, smooth use made of contextual information.

• Allows expert knowledge to be incorporated

• Allows any degree of context dependency to be simply incorporated.

Disadvantages
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• Requires expert knowledge to specify question set

• Locally optimal decisions made

• Not all possible question combinations asked
[30%]

(c) The GMM system uses multiple components to model each state. The context
may be implicitly modelled using the GMM. The modelling is explicit for the triphone
system. Problem is that the GMM system allows the “context” to swap every frame.
It also allows non-Gaussian and bimodal distributions to be modelled. [20%]

5. Search

(a) Token passing can be taken straight from notes. Define

• a start token to be a token Q such that Q.logP is zero (i.e. pprobability = 1.0)

• a null token to be a token such that Q.logP is negative infinity (i.e. pprobability
= 0.0).

Pass a copy of the token Q in state i to
state N+1;

Put a start token in entry node;
Put null tokens in all other nodes;
for each time t = 1 to T do

for each state i <= N do
Pass a copy of the token Q in state i
to all connecting states j;
  Q.logP := Q. logP + loga ij + logb j (yt )

end;
Discard all original tokens;
for each state i<=N do

Find token in state i with max logP
and discard the rest

end;
for each state i connected to state N+1 do

  Q.logP := Q. logP + loga i, N+1
end;

end;

Find token in state N+1 with max logP
and discard the rest;  

Step
Model
Proc-
edure

Put null token in entry state

[25%]

(b) The linear lexicon is given over the page.
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f r iy

t r iy

t r iy t

sil

sil sil

[20%]

(c) (i) Every HMM state is either active or inactive. Initially, all network entry states
are active and all other states are inactive. The beam search algorithm then works
as follows

(a) For each active state

i. Propagate internal tokens as normal

ii. Record max logP in any state, call this gMax

(b) De-activate all states for which logP < gMax - B where B is the beam width

(c) Propagate external tokens only if they are within the beam i.e. logP < gMax -

B

(d) Re-activate all states which have received a new entry token
[20%]

(c) (ii) For efficient implementation the unigram lannguage model is added at the
start of each word. This allows all information source to be incorporated as soon as
possible. [15%]

(d) The tree-structured lexicon is given below

f r iy

t r iy

t

free

tree

treat

This reduces the number of active paths at the start of all the words. Since most
paths from incorrect words are pruned out after the first few frames, this dramatically
reduces the number of path propagations required. [20%]
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