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1. Feature detection

(a) I(z,y) is a function of many variables, including the position of the camera; the
properties of the lens and the CCD; the shape of the structures in the scene; the
nature and distribution of light sources; and the reflectance properties of the visible
surfaces.

Edge detection is commonly used in the first stage of many computer vision appli-
cations, since edges provide a compact representation of image structure and are
invariant to illumination effects. Compared with raw images, edges offer significant
data reduction while preserving much of the image’s useful information content (it
is possible to recognise many structures in a line drawing of a scene). In contrast,
most of the discarded information is not useful for discovering scene structure and
motion.

(b) The Marr-Hildreth operator convolves the image with a discrete version of the
Laplacian of a Gaussian and then localises edges at the resulting zero-crossings. The
Canny operator is a directional edge finder. It first localises the orientation of the

edge by computing

VY (Gy(a,9) + I(z.v))
IV (Go(z,y) * I(z,y))]
and then searches for a local maximum of |V (G, % I)| in the direction fi. This is
equivalent to finding zero-crossings in the directional second derivative of (G4 * I)
in the direction fi.
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The principle advantage of the Marr-Hildreth operator is computational simplicity
and efficiency: edge detection requires only a single convolution and the detection of
zero-crossings. Conversely, the Canny operator requires an additional, costly search
for a local maximum normal to the gradient direction which requires the storage of
both gradient magnitude and gradient direction.

The advantage of the Canny operator is that it localises the edges correctly and has
some robustness to noise. Any differential operator amplifies noise. The Canny op-
erator computes only first derivatives and then searches for a local maximum (which
is equivalent to a zero-crossing of the second derivative) normal to the gradient. The
Marr-Hildreth operator computes second derivatives both along and normal to the
edge. Computation of the second derivative along the edge emphasizes noise in
that direction while serving no purpose in edge detection. This latter noise leads to
incorrect edge localisation.

(c) The rate of change of intensity I in the direction n is found by taking the scalar
product of VI and fi:
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where I, = 01/8z, etc. [20%)

We smooth I? by convolution with a Gaussian kernel:
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where () is the smoothed value. The smoothed change in intensity in direction n
is therefore given by
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where A is the 2 x 2 matrix
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Elementary eigenvector theory tells us that
M S Crlz,y) < A

where A; and ), are the eigenvalues of A. So, if we try every possible orientation n,

the maximum change in intensity we will find is A,, and the minimum value is A;.

We can detect a corner by looking at the eigenvectors of A. For a (corner) A; and A,
both large. It is necessary to calculate A at every pixel and mark corners where the
quantity A1 Az — k(A1 + A2)? exceeds some threshold (k & 0.04 makes the detector a

little “edge-phobic”). Note that det A = A1Az and trace A = ) + A2, so the required 2)
eigenvalue properties can be obtained directly from the elements of A.

. Projection matrices under perspective and weak perspective.

(a) (i) Parallel planes meet at lines in the image, often referred to as horizon lines.
To prove this, consider a plane in 3D space defined as follows:

X,n=d

where n = (ng,ny,n,) is the normal to the plane. We can analyse horizon lines by
writing the perspective projection in the following form:
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Taking the scalar product of both sides with n gives:
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As Z, — oo we move away from the camera and we find

x Ng
Y ny | =0
f n;

Thus the equation of the horizon line is
NeT + gy + fr, =0

which depends only on the orientation of the plane, and not its position. Thus a set
of parallel planes meet at a horizon line in the image.

(b) The overall imaging process, from world X to image W, can be written as a
single matrix multiplication in homogeneous coordinates:

ke, 0 wug f 000 R T |- .
w=|0 ky, v 0 f 0O X =PX, say
0 0 1 0 010 00T

P is a 3 x 4 matrix, so the process can be expressed as

X
Su P11 D12 Pi3 DPu4 %
SU | = | P21 P22 P23 D24 7
5 D31 P32 P33 D34 1

P can be estimated by observing the images of known 3D points. Each point we
observe gives us a pair of equations:
su _ puX +pY +pi3Z +pu

U = -— =
s P31 X + p32Y + p3zZ + pag

I

sv _ P21 X + p22Y + pasZ + pay
s p3iX +p3Y +pssZ +pay

Since we are observing a known scene, we know X, Y, and Z, and we observe the pixel
coordinates u and v in the image. So we have two linear equations in the unknown
camera parameters. Since there are 11 unknowns (the overall scale of P does not
matter), we need to observe at least 6 points, in a non-degenerate configuration, to
calibrate the camera. In practice, we would use more than 6 points to mitigate the
effects of measurement noise.

The equations can be solved using orthogonal least squares. First, we write the
equations in matrix form:

Ap=0
where p is the 12 x 1 vector of unknowns (the twelve elements of P), A is the
9n x 12 matrix of coefficients and n is the number of observed calibration points.
The orthogonal least squares solution corresponds to the eigenvector of ATA with
the smallest corresponding eigenvalue.
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The linear solution is, however, only approximate, since we have not taken into
account the special structure of P. Ideally, the linear solution should be used as the
starting point for nonlinear optimization, finding the parameters of the rigid body
transformation, perspective projection and CCD mapping that minimize the errors
between measured image points (u;, v;) and projected (or modeled) image positions

(ﬁ'iv @i):
mgn Z((uz — ;)% + (v — %)?)

Given the projective camera matrix, we can attempt to recover the intrinsic and
extrinsic parameters using QR decomposition. Writing

P = 0 f kv (%) 0 = 0 f kv (%) R T
0 0 1 0 00 01 0 0 1

= C[R|T]=[CR|CT |

it is apparent that we need to decompose the left 3 x 3 sub-matrix of P into an upper
triangular matrix C and an orthogonal (rotation) matrix R. This can be achieved
using QR decomposition. T can then be recovered using

T =C""[pus pau P ]T

It is not possible to decouple the focal length f from the pixel scale factors &, and k.

(c) Under weak perspective projection, we assume that all points lie at approx-
imately the same depth Z4 from the camera. This allows the projection to be
re-written as follows:

SUA kuf 0 0 UQZA );,c
svqa | =1 0 kyf 0 vyZy Zc
) 0 0 0 Zu lc

Weak perspective is a good approximation when the depth range of objects in the
scene is small compared with the viewing distance. A good rule of thumb is that
the viewing distance should be at least ten times the depth range in the scene.

The main advantage of the weak perspective model is that it is easier to calibrate
than the full perspective model. The calibration requires fewer points with known
world position, and, since the model is linear, the calibration process is also better
conditioned (less sensitive to noise) than the nonlinear full perspective calibration.

. Planar projective transformations

(a)

(i) Since the transformation operates on homogeneous coordinates, the overall scale
of the transformation matrix does not matter and we could, for instance, set {33
to 1. The transformation therefore has 8 degrees of freedom.

(ii) The image of a square could take any of the forms shown on the next page.
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Translation (2 DOF) Rotation (1 DOF) Scaling (1 DOF)

Shear - axis and Fanning - equation of {2 O]
magnitude give 2 DOF horizon line gives 2 DOF (
,}
(iii) The equation of the conic in the first image is wT Cw = 0, where
a b/2 d/2
C=|b/2 c e€/2
d/2 e/2 f

Using again the relationship % = T~ W', we find the equation of the corresponding
conic in the second image as follows:
(T#)TCT'w =0 & &« TTCT % =0
Alternatively, the conic in the second image can be expressed simply as C' =
TTCcT™ [20%]

(b) Assume, without loss of generality, that before the camera is rotated, the camera
is aligned with the world coordinate system and hence (-{»

2 X
w=[1]0] =Y |=X
Z
Z
1
where K is the 3 x 3 matrix of intrinsic camera parameters:
f ku 0 Up
= 0 f kv Vo
0 0 1
It follows that
X="tw

After rotating by R about the optical centre, the same world point X projects to a
different image point W' as follows:

X
X
w=[R|O] g =R|Y |=RX=R'w=Tw
g 0
1



where T = R™!. Hence the relationship between points in the original image and
corresponding points in the second image is a 2D projective transformation.

4. Stereo vision

(a) The stereo camera geometry constrains each point feature identified in one image
to lie on a corresponding epipolar line in the other image. If the cameras are
calibrated, then the equation of the epipolar line can be derived from the essential
matrix. For uncalibrated cameras, it is possible to estimate the fundamental matrix
from point correspondences and derive epipolar lines from the fundamental matrix.
Epipolar lines meet at the epipole: this is the image of one camera’s optical centre
in the other camera’s image plane. There are two epipoles, one for each image.

(b) The essential matrix E describes the epipolar geometry of a stereo rig in terms
ofraysp=[z y f]7, where (z,y) are the metric image plane coordinates of an
observed point and f is the camera’s focal length.

To derive the essential matrix in terms of R and T, we start with the equation
relating the two coordinate systems:

X,C = R,Xc—-}-T:?TXX' =T x RX¢

0 -7, T,

= X (T xRXe) = 0& X(.(TxRXc) =0, where Tx = | T 0 =T
-7, T 0

& p’T[TxR]p = 0, since rays and camera-centered positions are parallel.

The essential matrix is therefore given by E = T R.

Epipolar geometry can be expressed in pixel coordinates and the epipolar constraint
leads to the fundamental matrix. The essential and fundamental matrices are related
by the internal calibration matrices K and of the left and right cameras, where

f ke 0 ug
- 0 f kv Vo |,
0 0 1

f is the focal length, k, and k, the pixel scale factors and (ug,vo) the point where
the optical axis intersects the image plane. F=""TT,R™"

(c) F can be estimated from point correspondences. Each point correspondence w w'
generates one constraint on F:

fuir fi2 f13 u
[u’ v’ 1} fa fao f2s %
far fa2 fa3 1

il
o

This is a linear equation in the unknown elements of F. Given eight or more perfect cor-
respondences (image points in general position, no noise), F can be determined uniquely
up to scale by solving the simultaneous linear equations. In practice, there may be more
than eight correspondences and the image measurements will be noisy. The system of



equations can then be solved by least squares, or using a robust regression scheme to
reject outliers.

The linear technique does not enforce the constraint that det F = 0. If the eight image
points are noisy, then the linear estimate of F will not necessarily have zero determinant
and the epipolar lines will not meet at a point. Nonlinear techniques exist to estimate F
from 7 point correspondences, enforcing the rank 2 constraint.

(d) The epipoles lie in the null spaces of I and FT. So, for the left epipole we have:
Fwe =0
If F were invertible, we would be able to write
We=F'0=0

which is a contradiction. It follows that F is non-invertible and therefore has maximum
rank 2.

(e) With unknown internal parameters structure is recovered up to 3D projective trans-
formation which can be removed by 5 known 3D points or calibration parameters of the
cameras. Scale can only be recovered by knowledge of a length.

. Applications

(a) The camera should look down on the ground plane (the floor). The image-to-ground
mapping has 8 degrees of freedom:

su P P12 P13 X
S | = | pa1 P22 Do3 Y
s P31 P32 1 1

This can be calibrated using four known points on the floor (and their corresponding
image positions), though for greater accuracy more correspondences should be used (with
least squares).

Consecutive images can be subtracted from each other (time differencing) to detect moving
people. The bottom of the moving region should correspond to the point of contact
between the person and the floor. The calibration can then be used to translate this into
a world position on the floor.

People can be tracked using cross-correlation of the moving blobs, or using B-spline snakes.
Kalman filter is used to integrate noisy measurements.

(c) A single view of a pointing hand (or arm) is ambiguous: the ‘piercing point’, where
the line defined by the hand intersects the screen, cannot be uniquely determined but
is constrained to a line, which is the projection of the hand’s line in the image (see (a)
below).
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(a) (b) (c)

With a second camera we obtain a similar constraint in the other image (c). There exists a
planar projective transformation (8 degrees of freedom) that maps one image of the screen
onto the other. This transformation can be calibrated by observing the four corners of
the screen. We exploit this to transform the constraint lines into a common ‘canonical’
view of the screen, and hence find their intersection (b).

The piercing point can then be projected back into the two images (small circles in (a) and
(b)); if the four reference points are known its world coordinates can also be calculated.

The user’s arm can be tracted using B-spline snakes (book work, see Handout 2).

(d) Given that the cameras are some distance from the workspace, an affine model is
appropriate:

X
[U}z{Pu P2 P13 Pis Y

v D21 D22 P23 Do VA
1

The left and right cameras can be calibrated by moving the gripper to four predetermined
points in 3D space, and tracking its image position using affine B-spline snakes. More
points (and least squares) could be used for better accuracy.

With two calibrated affine cameras, it is straightforward to triangulate to recover struc-
ture. Each point observed in left and right images gives us 4 equations in the 3 unknowns
(X,Y, Z). These can be solved using least squares.

The user needs to specify the target in each view. The calibration can then be used to
determine the world position of the target, and the gripper moved to the right location
for a grasping manoeuvre.

Roberto Cipolla
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