ENGINEERING TRIPOS PARTIIB 2004
MODULE 4A9 - MOLECULAR THERMODYNAMICS
SOLUTIONS TO TRIPOS QUESTIONS (JBY/AJW)

1 (a) All effusing molecules have u, > 0 and have come from the vessel where the velocity
distribution is Maxwellian. Hence the distribution y(u,) must have the form:
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(b) The mathematical form of the distribution is therefore:
For —0 <u, <0, wu,) =0
2
u
For 0< u,<oo, u,) = Aexp| ——=
x w(u,) p[ R TJ
The constant 4 can be found from the normalisation condition using the given integral:
© © 2 1/2
ft//(ux)dux = jAeXp M gy = Al(27zRT)”2 =1 ~ 4= |-2 [15%)]
- 5 2RT 2 7 RT

This can also be deduced from the Maxwellian distribution by noting that, within the vessel,
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C)=|——| exp|l—2=
wic) [27zRTj p( 2RTJ
but that this includes molecules with negative as well as positive C;. If the negative contribution
is removed, then y must be doubled in the positive region to maintain the correct normalisation.

(¢) The mean value of u, is given by:
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u u w(u)du, = —_ u._exp| - —— |du
] i ) du, OJ(HRTJ ; p( 2R] ;
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(d) Kinetic temperature is defined by ‘mean translational KE per unit mass = 3R7/2’.

The mean value of ui is given by:
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w = [uly@)du, = I(E%Tj uy exp(— ;;;‘T]dux
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(using the given integral)
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We also have 5 = 72 = - because the distribution of molecular velocities in the y- and

z-directions is obviously the same as in the vessel. Hence,

Wt ul+ul+ul 3RT
2 2 )
and so the temperature of the effusing molecules is 7, the temperature of the gas in the vessel. [20%]

(¢) The number density of effusing molecules is half that in the vessel because only molecules
with u, > 0 can get out. Hence,
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o= Lpii A = 1_2_(_2”) 4 = _Lm [15%]
2 2RT\ =« (22RT)
(f) If Vis the volume of the vessel, then,
Vig_ = L@. = —-——-——pA
dt  RT dt (27RT)"?
1/2
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2 (a)

. y 1A/
Assume molecules make their last collision one mean free y=+A1 —>
path above or below the plane y = 0.

cl ] 70
Flux of KE from below = 25| ¢ 7(0) - ¢, 2%E ~0 ©

4 | dy | Y
Flux of KE from above = 2| ¢ 7(0) + ¢, 49 _ T(-2)

4 | dy | y=-4
Net flux of KE (in positive y-direction) = ¢ = - pChe, dT

2 dy
Macroscopically thermal conductivity is defined by ¢g = —k—c;—T and hence, k = % .
'y

Thus 4= —}Z- [25%]

More exact kinetic theories give a value of A about 2.5 times larger. This is because the simple
theory neglects the correlation between molecular velocity and distance travelled (molecules
with high KE crossing the plane y = 0 tend to come from further away). [5%]

The mean molecular speed C varies with 7% and the mean free path A varies with p'. Hence,
the thermal conductivity k varies approximately with 7" and is almost independent of pressure. [10%]

(b) If L>> A1, the gas may be treated as a continuum so that ¢, = —kd—T with boundary

dy
conditions T=1T7} at y=0, and T=T, at y=L. Hence,
k(T,-T5)
do = — I'L“ 2=
Using the result of the simple theory,
Ca
0 = 575 01 [10%]



(¢) If L<< A4, collisions between molecules may be neglected in favour of collisions with the
plates. This is the regime of free-molecule heat transfer.

Let the temperature of molecules reflected from Plates 1 and 2 be Tx; and Tx, respectively.

Energy flux incident on Plate 1 = £4£ch I
o _ pC
Energy flux incident on Plate 2 = chT I

Hence, net heat transfer rate from Plate 1 to Plate 2 = ¢ = —%C—cv (Tpy—Tg,)

. . Ty —-T,
From the definition of the accomodation coefficient for Plate 1, T} — Ty, = —&—£%
a
o, . . TR2 —TRI
From the definition of the accomodation coefficient for Plate 2, T, — Ty, =
a,
1 1
Hence: (L -T) + (Tp—Tpy) = Ty =Tgo)| — +—
a @
. 1 1
That is: (I -1,) = (Tg~Tpy)| —+— - 1
a &
Ce, (1 1 Y
c
Thus: g, =29 [—+——-1J (T, ~T,)
4 \a a

The ratio of the continuum to free-molecule heat flux is therefore given by,

_qi = pClcV i L+_.1_._1 — L+L_1 _2_/1 — L.*._l__._l 2Kn
9. 2L pCec, o L o

where Kn = A/L is the Knudsen number and the simple theory for & has been used giving B = 2. [50%]



3(a) N; — The number of particles in energy group (or level) j, corresponding to the most

probable macrostate.

C; - The number of energy states within group /.
N  — The total number of particles.
&; — (Average) energy of j-th group energy states.

The Boltzmann distribution is valid in the so-called ‘Boltzmann limit’ — at elevated temperatures.
The energy states are then very closely spaced and are sparsely populated by the particles. The
chances of two particles existing in the same energy state are so small that there is no difference
between B-E and F-D statistics.

(b) 7= ZC —&; /kT Z—e,-/kT

i

where the second summation is over all energy states (for which C; = 1). The energy of each state
can be written as &, = &; ;. +&; ;.- Thus,

7 = Z 5ktr+5lmt Z 5ktr/kTZ gl'tr/kTZZZ

tr<~int *
k /

This is possible because the translational and internal energy modes are independent. A similar
analysis gives Zis = Zot Zyi» , but this is approximate since the rotational and vibrational modes
are not truly independent: vibration affects the moment of inertia of the molecules, and the
centrifugal field affects the vibration.

()
7= che—sj/kT

—E'/kT
(aT) kT? Z '

but C.e M :zN*.
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oz Z . UZ
—| =—=>¢N;=
[aTjV NkT? 5 NkT?

U= NkTZ[%ln(z)]
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Substituting Z2=2,2;,, ~Z2,Z,,,Z,;, gives,

tr<~int
2 0 2 0
U=NkT*| =In(Z,)| +NkT* —=In(Z,,)
oT v oT v
= Utr + Uint (z Utr + Urot + Uvib)
from whence it follows that,

oU
¢, = = cv,tr + Cv,int ~ cv,tr + cv,rot + cv,vib
or ),

[20%)]



4 (a) The number of energy states with energy less than & is given by the volume
eighth of the sphere of radius 7, where n? = n12 + n% + n32 . Thus,

3
I‘(e) _ —x—(Z—(Z )1/2] - dnV (2 )3/2
At the RMS speed, ¢ =3kT /2, and at twice the RMS speed & = 6kT .

p 10°
pR  (0.1/0.75)x (8315/40)

Substitution into the expression for I (with m = W/ Ny) gives,
(i) Number of states between 0 & RMS speed = 1.07x10°!

(i) Number of states between 1 & 2xRMS speed = 7x1.07x10*! = 7.48x10*!

The total number of particles = (0.1 / 4.0) x No = 1.506x10%*, hence the majority of energy states

are empty.

(b) The total energy is given by,
E:(M+%)hv=(n1 +14ny+ 24 +%)hv

n1+n2 +n3 =M -1

(i) For M=4, n;+mn;+n3=3 and the possible microstates are:

n) ny n3
0 0 3
0 1 2
0 2 1
0 3 0
1 0 2
1 1 1
1 2 0
2 0 1
2 1 0
3 0 0

of one
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(ii) For M = 4, the total number of microstatesis, Q = 4+3+2+1
Extending this to the general case when M can take any value:
Q=M+ M1+ M2)+ ..+1

This is an arithmetic series and hence,
Q = %(MH) [20%]

(iii) In terms of the total energy F,

v=-L_1
hv 2
Hence, the system entropy is given by,
2
S = kin@) = kin| - 2 -1 [15%]
2\ h¥v? 4



	
	
	
	
	
	
	
	

