ENGINEERING TRIPOS PART IIB

Worked solutions - May 2004

Module 4F7

DIGITAL FILTERS AND SPECTRUM ESTIMATION

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator
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1 Consider the following signal {u(n)} given by

u(n)=oau(n—-1)+uv(n)

where |a| <1 and {v(n)} is zero-mean white noise of variance E (v2 (n)) = o2 .

This signal is filtered through a linear filter having impulse response {f (¢) ,L:_Ol
and the observations are

L-1

y(n)= 3 BE)un—i)+wn)

1=0

where {w(n)} is zero-mean white noise of variance F (11)2 (n)) = 02, . The noise
{v(n)} is uncorrelated with {w(n)}.

(a) Consider the vector u(n) = (u(n) u(n—1) ... u(n— M+ it
Derive expressions for E (u (n)uT (n)) and E(y(n)u(n)), where M > L.
[50%]

Answer. One has

E{u?(m)} = B {(au(n-1)+v(m)*}
— o’E {u2 (n— 1)} + 02

thus

and
E{u(n)u(n-1)}=E{u(n—1)(cu(n—1)+v(n))}.

:aE{UQ(n—l)}: v

Qoy,

1—a2

Similarly, one can easily show that

alk_uag
5

E{u(k)u(l)} =

1l -«

One has
E{y(m)u(m)}=(En)u®) Eyn)umn-—1) .. E(ym)un-M+1)"

(cont.



where
L-1
E(y(n)u(n—j))=E (( B (@) u(n—1) +v()) (n~j))
1=0
L-1
=) BEEuMm-)ur—7j))+E(n)uln-7)).
.

B)E(u(n—iju(n—j)).

il

s
Il
=

(b) Give the explicit expression for the Wiener filter hgpy that minimises

J(h)=E ((y (n) — hTu (n))Q)

and compute J (hopt) .
Hint. No additional calculation is required. [25%]

Answer. We know that the filter minimizing the error is the Wiener filter

hopr= (£ {u (n) uT (n)})—l E{y(n)u(n)}.

However, clearly hgpt=(8(0)...8(L —1) 0...0) minimizes the square error and

in this case

J (hopt) =F ((y (n) = hoptu (?’1))2> =F (w2 (n)) = 0'121).

(¢) In a real-world environment, the filter {3 (¢) }L ! is unknown so the
Wiener filter cannot be implemented. Describe a LMS algorithm to approximate
the Wiener filter. Would you recommend the use of the LMS algorithm if |a| ~ 17

Explain your answer, giving potential alternatives if you would not recommend LMS.

[25%]

Answer. One has

h(n) = h(n——l)—l-,u,( (n) —hT(n—1)u ())u(n).

To ensure stability of the LMS, we require

1

= ME {u?(n)}

(CONTINUED OVER.



where
2

E {u2 (n)} -

o 1-—a2

As |a| — 1, the input signal is more and more colored and to ensure stability

has to be very small. Consequently, one should not use the LMS algorithm in this

case. As an alternative, one can use the Normalized LMS or RLS.
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2 (a) Consider the following recursive algorithm (whitened gradient search
method)
h(n)=h(n—1)+ R (p—Rh(n—-1)) (1)

where R and p are respectively a definite positive matrix and a vector of
appropriate dimensions. Assuming h(n) converges towards a limit hgpt, find

an expression for hgpt. [25%)]

Answer. If h(n) converges towards hgpy , then
hopt = hopy + R ™ (p — Rhgpy) -

It follows that
p—Rhyy =0 hopy = R™1p.

(b) Using (1) and the expression for hgpt , obtain a recursion for

Deduce a condition on g ensuring convergence of the recursive algorithm whatever

initial vector v (0) is chosen. [30%]

Answer. One has

h(n)=h(n-1)+ R (Rhept—Rh (n — 1))
=h(n—1)+p (hopt—h (n — 1))
=>v(n)=(1-pvn-1).

It follows straightforwardly that the algorithm is stable if and only if
p<l.

(¢)
Let R and p be given by R=FE {u(n) ul (n)} and p=FE{u(n)d(n)} where
u(n)=(u(n) u(n—=1) ... u(n—M+1))T. Inpractice, R and p are typically
unknown and one only has access to a realisation of the input signal {u(n)} and
of the reference signal {d(n)}. The signals {u(n)} and {d(n)} are assumed

stationary and ergodic. We consider the following recursive algorithm
h(n) =h(n—1)+pRM)] (d0) - u" mh(n-1))um) (@)

(CONTINUED OVER.



where ) .
R(n)———(I—E)R(n—l)—i-ﬁu(n)urr(n). (3)

Explain why (2)-(3) can be interpreted as a stochastic gradient approximation of

(1). [20%)]

Answer. As the signal {u(n)} is stationary and ergodic then

zu(n) u” (n) — R.

k=1

R(n) =

S

Moreover, one has

E () = u @ h(n-1)um)] = ~Vpg_J (b)

e J(h)=E [(d (n) — u” (n) h) 2} .

Thus the algorithm defined by (2)-(3) corresponds to a stochastic gradient algorithm
minimizing R™1J (h).

(d) Assume now that the signal {u(n)} is not stationary. Explain why
the algorithm defined by (2)-(3) would not be useful in this context. Suggest a
modification that allows for a non-stationary environment. [25%)]
Answer. In the non-stationary context, this algorithm would be
inefficient as
R (n) = %Zu(n)uT(n)
k=1
does not converge towards any meaningful quantity. In this case, it would be more

suitable to define
R(n)=MR(n—-1)+(1-Nu®) u® (n)

where ) is a suitable forgetting factor; 0 < A < 1.
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3 (a) Describe the parametric approach to power spectrum estimation. Your

discussion should include the ARMA, AR and MA models and a comparison of

parametric methods with non-parametric methods such as the periodogram.
Answer:

Bookwork as follows from lecture notes (more detailed than required):

ePeriodogram-based methods can lead to biased estimators with large

variance

oIf the physical process which generated the data is known or can be well

approximated, then a parametric model can be constructed

eCareful estimation of the parameters in the model can lead to power

spectrum estimates with improved bias/variance.

oWe will consider spectrum estimation for LTT systems driven by a white

noise input sequence.

oIf a random process {X,} can be modelled as white noise exciting a
filter with frequency response H(e/“T) then the spectral density of the

data can be expressed as:

Sx(e7T) = o2, | H(e?T)?

where o2, is the variance of the white noise process. [It is usually

assumed that 05, = 1 and the scaling is incorporated as gain in the

frequency response]

eWe will study models in which the frequency response H (ej“’T) can be
represented by a finite number of parameters which are estimated from
the data.

eParametric models need to be chosen carefully - an inappropriate model

for the data can give misleading results

ARMA Models A quite general representation is the autoregressive
moving-average (ARMA) model:

(CONTINUED OVER.

[30%]
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eThe ARMA(P,Q) model difference equation representation is:

P Q
p=1 q=0

where:

ap are the AR parameters,

bq are the MA parameters
and {W,} is a zero-mean stationary white noise process with unit

variance, a?u =1.

oClearly the ARMA model is a pole-zero IIR filter-based model with

transfer function

where:
P Q
Alz) =1+ Z apz" P, B(z) = Z bgz™?
p=1 q=0

With @ = 0 we have the AR model and with P =0 the MA model.

eUnless otherwise stated we will always assume that the filter is stable, i.e.
the poles (solutions of A(z) = 0) all lie within the unit circle (we say in
this case that A(z) is minimum phase). Otherwise the autocorrelation

function is undefined and the process is technically non-stationary.

eHence the power spectrum of the ARMA process is:

_|Bh)P

SX(eij) - |A(eij)]2

The ARMA model is quite a flexible and general way to model a

stationary random process:

eThe poles model well the peaks in the spectrum (sharper peaks implies

poles closer to the unit circle)
eThe zeros model troughs in the spectrum

(cont.
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eComplex spectra can be approximated well by large model orders P and

Q

Note however, that model order determination is critical for ARMA modelling and
an ARMA model may not be appropriate for certain datasets.

Compared with non-parametric methods, the variance in estimation
could be lower, particularly if the model is appropriate for the data, but if not
then an (asymptotically) unbiased non-parametric method such as the periodogram

may be a better choice.

(b) Show that the autocorrelation function Ry x[k] for a @ th order moving

average (MA) model can be expressed as
Rxxlkl=c¢, k=0,1,..,Q

where the terms c¢; should be carefully expressed in terms of the moving average
parameters {bq} .

Answer:

This may be adapted from the full ARMA proof in the lecture notes, as
follows.

The autocorrelation function Ry x|[r] for the output x, of the MA
model is:

Rx x[r] = Elrntnr]
Substituting for xp+r from the model equation gives:

Q

q=0

Q
q=0

The white noise process {Wy} is wide-sense stationary so that {Xp}

is also wide-sense stationary. Therefore:

Q
> bg Rxwlr —q) (5)

q=0

(CONTINUED OVER.

[30%]
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The cross-correlation term Ryp/[.] can be obtained as follows. Let the

system impulse response be hp = by, , since the MA model is an FIR filter, then:

Q
In = Z b Wn—m
m=0

Therefore,
Q
Elzpwy k] = Elwpak Z b Wn—m)
m=0
Q
Rxwlk] = bm Elwy ik wn-m]
m=0

Now the noise is a zero-mean stationary white process so that:

o, ifm=—k

Elwn g wn-m] = )
0 otherwise

and 012/‘/ =1 without loss of generality. Hence,
Rxw k] =h_j

Substituting this expression for Ryyy[k] into equation 5 gives the Yule-
Walker Equation for an MA process,

Q
Rxx[r] = Z bgbg—r|=cr (6)
q=0

and ¢, may be simplified as

Q byhg—y ifr<
o = Zq:rqqr if r <@ (7)
0 ifr>@

(c) Three values for the autocorrelation function of a random process are

determined as:

Ryxx[0] =1.00, Ryx[l]=—-048, Rxx[2]=0.19

(cont.
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(up to two decimal places).

Fit a minimum phase MA model with ¢ = 2 to this data using the
spectral factorisation method, carefully explaining the steps in your working. [40%)

You may use the following factorisation to assist in answering part (c):

7722571452525+ 2% =
272(z — 0.5exp(in/3))(z — 0.5 exp(—in/3))(z — 2 exp(in/3))(z — 2 exp(—in/3))

Answer:

From lectures we have that:

Q
B(z)B(z"")= Y Rxxlrlz™" 8)
r=—Q

Hence we can identify (from the given factorisation) the zeros of B(z)
as 0.5exp(in/3) and 0.5exp(—im/3). Multiplying this out gives:

(1 —z"t0.5exp(in/3))(1 — 2710.5 exp(—in/3)) = 1 — 0.5z~ +0.25272

Comparing with the measured autocorrelation parameter Ry x[0] = 1

we have: )
1= b7 =g*(1+0.25+0.0625) = 1.3125 g
1=0
Hence
1 -1 )
B(z) = (1-0.52""40.2527°)

v/1.3125
and the MA model is:

Zn = 0.873(up — 0.5up_1 + 0.25u,_9)

where wu, is white noise with variance 1.

(TURN OVER
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4 (a) Discuss the effects of time-domain windowing in the spectrum analysis
of discrete-time signals. You should include a discussion of spectral leakage,
spectral smearing and contrast the properties of Hamming, Hanning and rectangular
windows. [40%]

Answer:

Bookwork from lecture notes, as follows (more detailed than required):

Consider the discrete case shown in figure 1.

8(pT)

N=16
&(pT) . w(pT)

Fig. 1

The sampled values of the window signal are wy, = w(pT) and g, =

g(pT) , respectively.

(cont.



13

Now, Take the DTFT of the windowed signal wpgp :

G(eT)

Gw(eij)

Gw (eij)

o.¢]
—ipwT
= Z gpe I
p=—00

0 .
= > {opuwpte ™7
p=-—00

& 1 2w . . .

> {5 [ W] et

‘ 2m Jo

pP=—00

12 0 > —jp(WT—0)

37 Jo W (e!”) Z gpe P db
p=—00

1 2T

— 0 j(wT'-0)
27 Jo W(e?”) G(e ) do

Exactly as before, the spectrum of the windowed signal is the convolution

of the infinite duration signal spectrum and the window spectrum.

Note that all discrete time spectra are periodic functions of frequency.

(CONTINUED OVER.
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As for the continuous case we can consider the use of tapered windows

and one class of window functions is the generalised Hamming window given by
27
wp =a— (1 = a)cos v forn=0to N -1

a=1 Rectangular window
a = 0.5 Hanning window (Raised Cosine or Cosine Arch)

a = 0.54 Hamming window

We can evaluate the spectrum (DTFT) of the generalised window as

follows
. N-l 1 - 2T 27
W(erT) = Z {05 (-9 [eJWp + e_JWp} } e ipeT
2
p=0

which gives

: wT
W (7T = e—IWN-neL ) sin(N4-)
sin(4%)
+1 —o |z si.n [%(w - ;W”)] j%si'n [%(wT +22W”)]
2 sin [3(wT — 27)] sin [2(wT + 2F)]

This is shown in figure 2 for the Hanning window (a = 0.5) and in figure 3 for other
values of « .

Note that many other classes with different side-lobe and central lobe
properties are available, e.g. Blackman, Bartlett, Chebyshev, Kaiser, ... These are all
available as Matlab functions, so you can easily display them and their DF'T within Matlab.

Matlab demo:

disc_wind.m

Type window at the Matlab command line for an interactive window display

program.

(b) The periodogram estimate for the power spectrum estimate of a random

process can be expressed as:

N-1
Sx(@T)y= S Rxx[kle /™
k=—(N-1)

where RX x|k] is the estimated autocorrelation sequence, given by:

. 1 N-1-k
RXX[k]:N Z Tn Ttk 0<k<N
n=0

(cont.
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and

Rxx[k] = Rxx[-kl, —N<k<0

Show that Rxx [k] is a biased estimate of the autocorrelation function, and hence show
that the expected value of the periodogram is given by:
o

E[gx(ejWT)]z Z ’kaxx[k] e_jkwT

k=—00

where wy is the Bartlett window of length (2N), defined as:

0, otherwise

NE D k< N
wk:{ LIRS

130%)]

Answer: Again, this can be done with modifications of the lecture notes, as

follows (we require the biased version of Rxx in this case):

(CONTINUED OVER.
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oThe expected value of the periodogram may be written as:

N-1
Edx(@M=E| Y Rxxlk] e—f‘“‘]

k=—(N-1)
N-1
= Y BlRxxlkl]e T )
k=—(N-1)

i.e. the DTFT of the expected autocorrelation function estimate
eWhat is E[Rxx/[k]] ?

E[Rxx[k]] :

(i)  Using the given form of autocorrelation function estimate:

1 N-1-k
'ﬁ Z xnxn—i—k:l

n=0

E[Rxx[k] = E

N-1-k
1

:N Z E[wn$n+k]

n=0
1 N-1-k
— % Y Rxxlk]
n=0
_ N—k
-~ N

Rx x|k]

hence biased as required.
We can summarize this results more conveniently (noting that
Rxx[—k] = Rxx[k] ) as:

E[Rxx[k] = wiRxx|k], k=-N+1,..,N -1

where,

Nkl k< N
wg = { v [kl (Bartlett or triangular window)

0, otherwise

(CONTINUED OVER.
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eSubstituting into the expression for E[Sx (e’“T)] we obtain:
N-1
ElSx(@ )= Y ElRxx[k]e T
k=—(N-1)
N-1
= Z wrRxx [k] g~ IkwT
k=—(N-1)
[o.¢]

= Z wrRxx [k] eIkl
k=—(c0)

(i) The two dominant frequency components in a random process are at
frequencies wj rad/s and wqrad/s. The sampling period is T = 0.1s.
Determine approximately the minimum window length 7' required to resolve
the two frequency components in the power spectrum estimate, if they are
likely to be spaced as little as 0.027 rad/s apart. State clearly any assumptions
you make. You may assume that the normalised 3dB bandwidth of a Bartlett
window having length M samples is 1.28(27/M) rad and its 6dB bandwidth
is 1.78(2n /M) rad.

Answer: The effect of the periodogram method in the frequency
domain is to convolve the true power spectrum’s frequency components
(delta functions) with the Bartlett window. Hence two components are
approximately resolved if their half-power (3dB) bands do not overlap, i.e.
they are spaced 2% 1.28(27/(2N)) apart (note: the Bartlett window in the
periodogram estimate is of length M = 2N ). Thus we have:

A(wT) > 0.2m % 0.1

which must equal twice the 3dB bandwidth of the shortest appropriate Bartlett
window, i.e. :
2%1.28 %27 /(2N) > 0.2mr % 0.1

Hence
N >2%1.28/0.1%0.2 =128

END OF PAPER

[30%]



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

