
Module 4F8 – IMAGE PROCESSING AND IMAGE CODING –
Solutions

1 (a) Windowing Method

Taking the inverse FT of some desired zero-phase 2d frequency response will, in general,

produce a filter with infinite support. One method of producing a filter withfinite support

is via thewindowingmethod. In this, we simply multiply the infinite support filter by a

window functionw(n1, n2) which forces the impulse response coefficients,h(n1, n2), to

zero forn1, n2 6∈ Rh whereRh is the desired support region.

If Hd(ω1, ω2) is the desired frequency response andhd(n1, n2) the corresponding impulse

response, then the windowed filter is given by

h(n1, n2) = hd(n1, n2) w(n1, n2)

The frequency response,H(ω1, ω2), of this filter is then clearly the convolution of the

desired frequency response and the FT of the window function,W (ω1, ω2).

ie:

H(ω1, ω2) = Hd(ω1, ω2)⊗W (ω1, ω2)

where⊗ represents convolution.

The effect of the window is therefore to smoothHd.

Two methods of forming 2d window functions from 1d window functions are:

i) Product of 1d windows

w(n1, n2) = w1(n1) w2(n2) or w(u1, u2) = w1(u1) w2(u2)

eg. if wi(ui) =

{
1 if |ui| < Ui

0 otherwise

thenw(u1, u2) = w1(u1) w2(u2) =

{
1 if |u1| < U1 & |u2| < U2

0 otherwise

ii) Rotation of 1d windows

w(u1, u2) = w1(u)|
u =

√
u2
1+u2

2

ie. we rotate a 1d continuous window to form a 2d continuous window (which is then

sampled to produce a discrete window). [25%]
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(b) Hamming-type Windows

w1(u1) =

{
α + β cos

πu1

U1

if |u1| < U1

0 otherwise.

The 2d ’Hamming’ window formed by the product of two such 1d windows is

w(u1, u2) = w1(u1)w2(u2) =





{
α + β cos

πu1

U1

} {
α + β cos

πu2

U2

}
if
|u1| < U1

|u2| < U2

0 otherwise

Now W (ω1, ω2) = W1(ω1)W2(ω2) as the FT is also separable.

∴ W1(ω1) =

∫ U1

−U1

(
α + β cos

πu1

U1

)
e−jω1u1 du1

=

∫ U1

−U1

α e−jω1u1 du1 +

∫ U1

−U1

β cos
πu1

U1

e−jω1u1 du1

Using the data book FT table for the first integral and the formula given in the question
paper for the second one gives:

W1(ω1) = 2αU1 sinc(ω1U1) + β
2 ω1 U2

1

π2 − ω2
1U

2
1

sin(ω1U1)

= 2U1

{
α +

β ω2
1 U2

1

π2 − ω2
1U

2
1

}
sinc(ω1 U1)

Similarly

W2(ω2) = 2U2

{
α +

β ω2
2 U2

2

π2 − ω2
2U

2
2

}
sinc(ω2 U2)

Hence
W (ω1, ω2) = f(ω1, U1) f(ω2, U2) sinc(ω1U1) sinc(ω2U2)

where

f(ωi, Ui) = 2Ui

{
α +

β ω2
i U2

i

π2 − ω2
i U

2
i

}

For aHamming window:

α = 0.54 and β = 0.46

∴ f(ω, U) = 2U

{
απ2 − (α− β) ω2 U2

π2 − ω2U2

}
= 2U

{
0.54π2 − 0.08 ω2 U2

π2 − ω2U2

}

Forω small: f(ω, U) ' 2 U × 0.54 = 1.08 U (a constant)

So, forω1, ω2 small, the spectrum follows a 2d sinc function – the sidelobes occur predomi-

nantly along theω1 andω2 axes and decay rapidly with increasingω (due to the
1

π2 − ω2U2

factor).
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Sketch of 2d Spectrum for a Hamming Window

[60%]

(c) Properties of good window functions:

Since the actual frequency response is the convolution of the desired frequency response
with the spectrum of the window function, we would clearly like the spectrum of the win-
dow function to be as much like a delta-function as possible. We therefore want something
with a small mainlobe width and sidelobes which are as small in amplitude as possible.

Forming 2d windows from 1d windows is a very simple way of producing 2d windows with
predictable behaviour.

i) Product of 1d windows- spectrum of 2d window is simply the product of the
spectra of the 1d windows - so easy to deal with. One problem is that sidelobes occur along
the axes so that the resulting filter has inbuilt preferential directions (see sketch above).

ii) Rotation method - spectrum is not as easy to visualise and sampling is a
little harder. One advantage of this method is that it produces windows with spectra which
are rotationally symmetric. Hence sidelobes do not occur along particular directions. [15%]
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2 (a) Discrete convolution

The continuous convolution, given, is:

y(u1, u2) =

∫ ∫
h(v1, v2) x(u1 − v1, u2 − v2) dv1 dv2 + d(u1, u2)

Infinite limits for the integrations are assumed.

In discrete form we write the above image model equation as

y(n1, n2) =
∞∑

m2=−∞

∞∑
m1=−∞

h(m1,m2) x(n1 −m1, n2 −m2) + d(n1, n2)

where themi andni are integers.

In the absence of noise we assume there is nod(n1, n2) term, and take the FT of the re-
maining convolution equation to give

Y (ω1, ω2) = H(ω1, ω2) X(ω1, ω2)

whereH(ω1, ω2) =
∑
n2

∑
n1

h(n1, n2) e−j(ω1n1+ω2n2)

∴ X(ω1, ω2) =
1

H(ω1, ω2)
Y (ω1, ω2)

⇒ 1

H(ω1, ω2)
is the inverse filter that we can apply to the FT of our observations,Y , in

order to recoverX and hence the original image via

x(n1, n2) =
1

(2π)2

∫ π

−π

∫ π

−π

X(ω1, ω2) ej(ω1n1+ω2n2) dω1 dω2

If H(ω1, ω2) has zeros or regions where it becomes very small, then we clearly have prob-

lems. In particular, small noise in regions of the frequency plane where
1

H
is very large

can be hugely amplified. In practice one can lessen the sensitivity to noise by thresholding
the frequency response.

eg:

Hg(ω1, ω2) =





1

H(ω1, ω2)
if

1

H
< γ

0 otherwise
[35%]
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b) In vector notation

y(n) =
∑

m∈Z2

h(m) x(n−m) + d(n)

We want to find thêx(n) that minimises the squared error

Q = E
{
[x(n)− x̂(n)]2

}
= E





[
x(n)−

∑
q

g(q) y(n− q)

]2




Since we are told that, we look for an̂x(n) which can be written as

x̂(n) =
∑
q

g(q) y(n− q)

To find the minimum, we differentiateQ wrt g(p):

∂Q

∂g(p)
= E

{
2

[
x(n)−

∑
q

g(q) y(n− q)

]
[−y(n− p)]

}
= 0 ∀ p ∈ Z2

Hence for the optimum filter̂g(q):

E {x(n) y(n− p)} =
∑
q

ĝ(q) E {y(n− q) y(n− p)}

If the images are spatially stationary we have

E {x(n) y(n− p)} = E {x(n− p + p) y(n− p)} = E {x(k + p) y(k)} = Ryx(p)

which is the cross-correlation betweeny andx.

Similarly

E {y(n− q) y(n− p)} = E {y(k) y(k + q− p)} = Ryy(q− p)

∴ Ryx(p) =
∑
q

ĝ(q) Ryy(q− p) ∀ p ∈ Z2

Taking the FT of this equation and lettingk = q− p:

Pyx(ω) =
∑
q

ĝ(q)
∑
p

Ryy(q− p) e−j!T p

=
∑
q

ĝ(q)
∑

k

Ryy(k) ej!T k e−j!T q

= Ĝ(ω) P ∗
yy(ω)
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Since power spectra are purely real,P ∗
yy(ω) = Pyy(ω).

∴ Ĝ(ω) =
Pyx(ω)

Pyy(ω)
as required.

[50%]

c) Wiener filter

If we write the above filter,Ĝ(ω), in terms ofH(ω), Pxx(ω) andPdd(ω), we obtain the
standard form of the Wiener filter which is

Ĝ(ω) =
H∗(ω) Pxx(ω)

|H(ω)|2 Pxx(ω) + Pdd(ω)

We can see from this form that

if |H(ω)|2 Pxx(ω) À Pdd(ω) then Ĝ(ω) → 1

H(ω)

which is simply the inverse filter we discussed in part (a).

Thus the Wiener filter tends to the inverse filter when the noise power spectrumPdd is much
smaller than the filtered signal power spectrum|H|2Pxx . [15%]
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3 (a) DCT matrix

T is orthonormal if the dot product of any row with any other row ofT is zero and if the
norm of each row (square root of the sum of the squares of the elements) is unity.

Norm of 1st row and 3rd row=
√

4a2 = 1
Norm of 2nd row and 4th row=

√
2b2 + 2c2 =

√
0.8536 + 0.1464 = 1

1st row and 3rd row are even symmetric, while 2nd row and 4th row are odd symmetric, so
dot products between even and odd rows are zero.
Dot product between 1st and 3rd rows= 2a2 − 2a2 = 0
Dot product between 2nd and 4th rows= 2bc− 2cb = 0

HenceT is orthonormal.

1-D transform on a column vector:y = Tx
1-D transform on columns of a matrix:Y1 = TX
1-D transform on rows of a matrix:Y = Y1 TT

So 2-D transform on rows and columns of a matrix:Y = TXTT [25%]

(b) DCT of edge subimage

Taking transforms of columns first (for simplicity):

Y1 = TX =




4ap 4ap 4ap 4aq
0 0 0 0
0 0 0 0
0 0 0 0




Now transforming the rows ofY1

Y = Y1 TT =




4ap 4ap 4ap 4aq
0 0 0 0
0 0 0 0
0 0 0 0







a b a c
a c −a −b
a −c −a b
a −b a −c




=




4a2(3p + q) 4ab(p− q) −4a2(p− q) 4ac(p− q)
0 0 0 0
0 0 0 0
0 0 0 0




[25%]
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(c) Coefficient selection

Putting in values fora, b, c, p, q:

Y =




140 −78.40 60 −32.47
0 0 0 0
0 0 0 0
0 0 0 0




Since the transform matrix is orthonormal,T−1 = TT and the energy of the signal is
always the same as the energy of its transform coefficients (energy is preserved between
signal and transform domains). This is because, ify = Tx, then for anyx:

yT y = (Tx)T Tx = xTTT Tx = xT I x = xT x

Hence if any transform coefficients are set to zero, the energy of the reconstructed image
is reduced by the energy of these coefficients. The resulting squared error (error energy) is
equal to that of the coefficients that were set to zero because the transform basis functions
are orthogonal to each other, so the squared error is just the sum of the squares of the
amplitude changes in all the basis functions.

To minimize the squared error, we must set to zero those coefficents with minimum energy,
which are 60 and−32.47 in the above matrix. Hence the two retained coefficients should
be 140 and−78.40 . [25%]

(d) RMS error

For an orthonormal transform, the total squared error in the reconstructed image will equal
the total squared error in the transform coefficients (as explained above). If the two smaller
coefficients are set to zero and the two larger coefficients are rounded to values of 150 and
−75 by the25n quantiser, then:

Total squared error= (140− 150)2 + (−78.4 + 75)2 + (60− 0)2 + (−32.47− 0)2

= 100 + 11.56 + 3600 + 1054.3 = 4765.9

.
.
. RMS error over the 16 coefs in the subimage=

√
4765.9/16 =

√
297.87 = 17.259

Note that due to orthonormality, it isnotnecessary to calculate the reconstructed subimage
to obtain the rms error.

Also note how small the squared error due to the quantiser is (111.56), compared with that
due to suppressing the smaller coefficients(4654.3). [25%]
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4 (a) Two-level Wavelet transforms

The purpose of the 2-band filter bank in the Fig. 1 of the question is to compress most of
the signal energy into the low-frequency band. We may achieve greater compression if the
low band is further split into two. This may be repeated a number of times to give a binary
filter tree. A version shown with 2 levels in the diagram below.

x

-H1(z) -
¹¸

º·
↓2 -

-H0(z) -
¹¸

º·
↓2

y1

y0

-H1(z) -
¹¸

º·
↓2 -

-H0(z) -
¹¸

º·
↓2 -

y01

y00

Two-level Wavelet Analysis tree for 1-D signals

The inverse wavelet transform is achieved by using the inverse filters (from Fig. 1b in the
question) in the reverse of the above tree. First we use filtersG0 andG1 to calculatey0

from y00 andy01, and then we use them again to calculatex from y0 andy1.

The 2-level tree may be extended for 2-D images, by applying the filters in turn to the rows
and the columns of the image, to create four subimages per level. They00 subimage from
level 1, is then split in the same way to create four subimages at level 2. This is shown
below.

x

- H1(z1) -¹¸

º·
↓2

- H0(z1) -¹¸

º·
↓2

Row Filters

Level 1

- H1(z2) -¹¸

º·
↓2 -

y11

- H0(z2) -¹¸

º·
↓2 -

y10

- H1(z2) -¹¸

º·
↓2 -

y01

- H0(z2) -¹¸

º·
↓2

y00

Column Filters

- H1(z1) -¹¸

º·
↓2

- H0(z1) -¹¸

º·
↓2

Row Filters

Level 2

- H1(z2) -¹¸

º·
↓2 -

y00,11

- H0(z2) -¹¸

º·
↓2 -

y00,10

- H1(z2) -¹¸

º·
↓2 -

y00,01

- H0(z2) -¹¸

º·
↓2 -

y00,00

Column Filters

Two-level Wavelet Analysis tree for 2-D signals [25%]
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(b) Perfect Reconstruction

Perfect Reconstruction is the condition that, if the inputs of Fig. 1b in the question are
connected directly to the outputs of Fig. 1a, then the final outputX̂(z) should equal the
input X(z) for any input signal. This means that the inverse transform will exactly invert
the forward transform process, with zero error.

It is a standard result of multirate filter theory that the process of downsampling by 2,
followed by upsampling by 2, shown in Fig. 1, can be represented by

Ŷ0(z) = 1
2
[Y0(z) + Y0(−z)] and Ŷ1(z) = 1

2
[Y1(z) + Y1(−z)]

Hence we see that

X̂(z) = G0(z)Ŷ0(z) + G1(z)Ŷ1(z)

= 1
2
G0(z)[Y0(z) + Y0(−z)] + 1

2
G1(z)[Y1(z) + Y1(−z)]

= 1
2
G0(z)H0(z)X(z) + 1

2
G0(z)H0(−z)X(−z)

+ 1
2
G1(z)H1(z)X(z) + 1

2
G1(z)H1(−z)X(−z)

= 1
2
X(z)[G0(z)H0(z) + G1(z)H1(z)]

+ 1
2
X(−z)[G0(z)H0(−z) + G1(z)H1(−z)]

If we requireX̂(z) ≡ X(z) — the Perfect Reconstruction (PR) condition— then:

G0(z)H0(z) + G1(z)H1(z) ≡ 2

and
G0(z)H0(−z) + G1(z)H1(−z) ≡ 0

Now if H1(z) = z−1G0(−z) and G1(z) = zH0(−z), as given, then

G0(z) H0(−z) + G1(z) H1(−z) = G0(z) H0(−z) + z H0(−z) . (−z−1) G0(z) = 0

as required. Hence the result is proved. [25%]

(c) Filter design

Substituting forG1 andH1 in the first of the above conditions, we see that

G0(z)H0(z) + G1(z)H1(z) = G0(z)H0(z) + H0(−z)G0(−z) = P0(z) + P0(−z) = 2

where we have defined a product filter,P0(z) = G0(z)H0(z) .

The odd powers ofz in P0 will cancel in the above expression. Hence to make the result
always equal to 2, it is only necessary for the coefficients of the even powers ofz in P0 to
be zero, apart from the coefficient ofz0 which must be unity.

Applying this to the expressions given forG0(z) andH0(z):

P0(z) = (az + b + cz−1) . (−1
4
z2 + 1

2
z + 3

2
+ 1

2
z−1 − 1

4
z−2)

= −a
4
z3 + (a

2
− b

4
)z2 + (3a

2
+ b

2
− c

4
)z + (a

2
+ 3b

2
+ c

2
)

+ (−a
4

+ b
2

+ 3c
2
)z−1 + (− b

4
+ c

2
)z−2 − c

4
z−3
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Hence
P0(z) + P0(−z) = (a− b

2
)z2 + (a + 3b + c) + (c− b

2
)z−2

For this to equal 2, we require that

a− b
2

= 0 a + 3b + c = 2 c− b
2

= 0

and so
a = c = b

2
and 4b = 2

Hence
b = 1

2
and a = c = 1

4

[25%]

(d) Image quality

In a wavelet compression system in which the reconstruction filters are different from the
analysis filters, it is found that best reconstructed image quality is achieved if the smoother
lowpass filters are used for reconstruction. This is because compression normally removes
most of the highpass coefficients at level 1 (and probably at level 2 also), and so the output
image is largely composed of weighted lowpass basis functions. Smooth basis functions in
general produce better image quality.

The level 2 lowpass basis function is given byG0(z) G0(z
2).

For the filter we have just designed,

G0(z) G0(z
2) = (az + b + cz−1) . (az2 + b + cz−2)

= 1
4
(z + 2 + z−1) . 1

4
(z2 + 2 + z−2)

= 1
16

(z3 + 2z2 + 3z + 4 + 3z−1 + 2z−2 + z−3)

This is a smooth triangular function. If the filters were swapped, then the reconstruction
basis functions would be based onH0, and we find that

H0(z) H0(z
2) = (−1

4
z2 + 1

2
z + 3

2
+ 1

2
z−1 − 1

4
z−2) . (−1

4
z4 + 1

2
z2 + 3

2
+ 1

2
z−2 − 1

4
z−4)

= 1
16

(z6 − 2z5 − 8z4 + 2z3 + 7z2 + 16z + 32

+ 16z−1 + 7z−2 + 2z−3 − 8z−4 − 2z−5 + z−6)

With its mixture of positive and negative values, this is clearly a less smooth function than
G0 gives, so we conclude that we shouldnotswap the filters.

[Calculation of this final convolution is not really necessary to see this result.] [25%]

J Lasenby and N G Kingsbury, Sept 2004.
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