Engineering Tripos Part IIB FOURTH YEAR

Module 4F9: Medical Imaging & 3D Computer Graphics
Solutions to 2004 Tripos Paper

1. Nuclear medicine imaging

(a) SPECT stands for single photon emission computed tomography. PET stands for
positron emission tomography. SPECT has the advantage of relatively cheap scanners
and ready availability of suitable radiopharmaceuticals without the need for an on-
site cyclotron. PET scanners are orders of magnitude more sensitive than SPECT
scanners, allowing reduced patient doses, shorter acquisition times and better signal
to noise ratios. However, the scanners are expensive and the radionuclides short-lived,
requiring an on-site cyclotron production facility. [20%)]

(b) (i) The photons are emitted uniformly over the sphere, but only those emitted
within the angle 0 hit the detector ring.
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If the surface area of the section of the sphere
subtended by the angle 6 is S, then the pro-
portion of photons hitting the detector ring
is S/dnr?, where r = 0.5 m. Approximat-
ing S by the surface area of the cylindrical
detector ring, we get S = 0.1 X 27r, so the
expected number of pairs hitting the ring is
10" x 0.1 x 277 /4nr? = 10% s71. S can be
found exactly by integration, giving a precise
answer of 9.95 x 105 s™! (not required). [10%)]

side view

(ii) Assuming each photon travels 20 cm through the attenuating material (because of

the ring’s finite thickness, most will travel slightly further than this), the probability

of any given photon reaching the detector ring is e7#* = ¢7%1%20 = (.135. Because

the fate of each photon is independent, the probability of both photons making it to

the ring is 0.1352 = 0.0183. The expected number of pairs reaching the detector ring

is therefore 0.0183 x 106 = 1.83 x 10* s71. [20%]

(c) (1) We use Poisson statistics to calculate the probability of photons being emitted
(and therefore detected, since there’s no attenuation) within a particular time period.
For an expected ring impact rate of r = 10® s71, the probability of no photons arriving
within At = 10 ns is

e—‘r‘At(,,.At)O

: _ 6_106X10X10_9 = 0.9900

p-(0) =



The expected count rate at detectors B and C is 10/180 x 10° = 5.56 x 10* s™. The
probability of no further pairs arriving within 300 ns is

e_rAt(’l"At)o _ 4 -9
p.(0) = - — o—5-56x104x300x107° _ (j 935
Assuming both types of rejection occur independently (ie. neglecting the small prob-
ability that further photons arrive at B and C within 10 ns), the probability that
the measurement is accepted is 0.9900 x 0.9835 = 0.9737. The expected successful
detection rate is therefore 0.9737 x 10% = 9.74 x 10° s™!.

(ii) The number of pairs successfully detected is of the form ze=*®.

successful detection rate

source intensity

Thus, with increased radioactivity the detection rate will eventually decline expo-
nentially, since there will be too many collisions at the detectors.

(d) In 2D mode, the detector rings are separated by retractable septa, so that only
activity from inside the ring is detected. This allows the use of relatively straightfor-
ward 2D reconstruction algorithms, and there are seldom any problems with detection
rate and collisions. However, the majority of the emitted photons — the difference

between the 107 emission rate and the 10® impact rate in part (b) — are absorbed

by the septa, meaning reduced sensitivity and increased Poisson noise.

In 3D mode, the septa are retracted and most of the photons impinge on the detector
modules. Sensitivity and SNR are increased, but full 3D reconstruction algorithms
must be employed. Also, fast detectors are essential to prevent the detection drop-off
at the right of the graph in (c) above.

Aside. To check the appropriateness of the independence assumption in (c)(i), we
can work out the joint probability precisely (this is absolutely not required by the
question, but is included in this crib for interest). Consider the three events:

A. That one or more photon pairs hit detectors C and D in the time period ¢ to
t + 10ns.

B. That one or more photon pairs hit detectors C and D in the time period ¢+ 10 ns
to t + 300 ns.
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C. That one or more photon pairs hit the rest of the ring (not detectors C and D)
in the time period ¢ to ¢t + 10ns.

These three events involve distinct photons and are therefore independent, so we can
simply multiply to find joint probabilities. The probability of successful detection is
the probability that none of these events occur.

p(ABC’) — ~10/180x10°x10x107° | —10/180x10°x290x10~°

- 6 -9
xe 170/180x10° x10x 10

_ e-1/180><106><10-9(10><10+10><290+170><10) = 0.974226836

This is almost the same as the estimate calculated in (c)(i).

Assessors’ remarks: This question covered qualitative and quantitative aspects of
nuclear medicine imaging. The qualitative parts were well answered, with most can-

didates exhibiting a good understanding of the strengths and weaknesses of PET and

SPECT, and of 2D vs. 3D imaging. Less impressive were the candidates’ calculations
of attenuation in (b)(ii) and collision probabilities in (c)(i). Many candidates didn’t
know to use an exponential term for the former and the Poisson distribution for the
latter, though three candidates did produce excellent answers.

. X-ray computed tomography and the Radon transform

(a) The two-dimensional Radon transform is defined as follows:

Rf(z,y)] = /+°°f(scos¢—lsin¢,ssin¢+lcos¢)dl

It maps f(z,y) onto the set of its integrals over lines at perpendicular angles ¢
and distances s from the origin. In other words, it maps f(z,y) onto the set of
its one-dimensional projections at all projection angles ¢. This essentially describes
the forward X-ray CT process, in which a set of projections p(s, ¢) is recorded of
the attenuation function p(z,y). The goal of the CT reconstruction algorithm is to
recover u(z,y) from p(s, §), ie. invert the Radon transform.

(b) (i) The Radon transform of a single point in the (z,y) plane is zero everywhere
except along a sinusoidal wave in the (s, ¢) plane (this is why a 2D Radon transform
is often referred to as a sinogram).
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(ii) The transform will be zero everywhere except where the line integral passes
through the point (r cosf,rsin ), ie. except where

scos¢ —Ilsing =rcosf and ssin¢ +lcos¢p = rsiné

To derive the equation of the non-zero locus, we need simply eliminate [ from the

above two equations.

lsin ¢

lcos¢

& rsingsind — ssin® ¢

< r(cos ¢ cos B + sin ¢ sin )
]

scos¢ —rcosf

rsinf — ssin ¢
scos?¢ — rcos¢cosb
s(cos® + sin®)

rcos(¢ — 0) 20%]

(c) (i) g(s) is the inverse Fourier transform of |w|:

a(s) = Ftlwll = | lwletdw

[10%]

(ii) The inverse Radon transform can be described as follows:

(a) Start with the projection at ¢ = 0. The integrand of the inverse Radon trans-
form says to convolve the projection with the filter kernel g(s). This is the
“filtering” bit of the filtered backprojection algorithm. The result is a function
of s only, where s is the direction perpendicular to the X-rays.

(b) The left hand side of the inverse Radon transform is defined over a two-dimensional
domain (z,y), but is nevertheless a function of s only. Thus, the next step is to
backproject the filtered projection so it covers the entire field of view in the (z,y)
plane. This is the “backprojection” bit of the filtered backprojection algorithm.

(c) Finally, the integration part of the inverse Radon transform indicates accumu-
lation of the backprojections over the full range of projection angles 0 < ¢ < m. [20%)]

(iii) The filter kernel ¢(s) is divergent in frequency and therefore unattainable in
practice. An alternative, practical filter is the Ram-Lak filter, which is identical to

the ideal filter up to a cut-off frequency w

max*
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® > [10%]
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(iv) The width ¢ of the X-ray beam determines the spatial sampling of the scanned
subject. Any features with spatial frequency above 1/t (the first zero in the Fourier
transform of the beam’s pulse shape) will not be accurately captured by the scanner.
The reconstruction filter can therefore be cut off at angular frequency w,., = 27/t.

Assessors’ remarks: This question tested the candidates’ understanding of the .

Radon transform and CT reconstruction by filtered backprojection. The question
was mostly book-work and well answered by almost all the candidates who attempted
it. The only part of the question to cause problems was (b)(ii), where candidates
were asked to derive the Radon transform of a single point in the plane. Most of the
correct answers built on a prior knowledge that the answer should be some sort of
cosine wave: only a couple of candidates were able to derive the equation from first
principles.

. B-splines and duplicated control points

(a) The main factors are parametric and geometric continuity, interpolation vs. ap-
proximation, subdivision and the convex hull property.

Some sort of continuity is almost always essential when using cubic curve segments in
computer graphics applications. Geometric continuity would suffice for static appli-
cations when the curve need only appear smooth to the eye. Parametric continuity

would be an issue in any sort of animation application (eg. camera motion paths,

robotic path planning, warping and morphing), where we require that the motion
of a point along the curve is smooth. Of the forms mentioned in the question, the
B-spline provides the best continuity (C? in the general case).

If the curve is required to interpolate all the control points, then the Catmull-Rom
spline would be best. The Hermite form also interpolates the control points, though
it also requires the definition of a number of tangents. Approximating curves, like
B-splines, may only pass close to the control points, but generally exhibit better
continuity.

When selecting a form to use as the internal representation inside some rendering
software, the ease of subdivision is an issue. This is because the curve can be rapidly
rendered by repeatedly subdividing the control points, then rendering the polyline
formed by the control points: this is generally quicker than evaluating cubic ex-
pressions. Bézier curves are the best in this respect. Another issue for this sort of

application is the convex hull property: by knowing that the entire curves lies inside -

the convex hull of its control points, various stages of the rendering process, especially
intersection tests, can be speeded up. Again, Bézier curves are good in this respect
(as are B-splines).

(b) Since B-splines exhibit the convex hull property, the join point between two
segments must lie inside the convex hulls of both segments’ sets of control points.
When P, = Pj3, the two convex hulls intersect along a line, as shown below.

[10%]

[40%)



So the join point must lie somewhere on the straight line between P; and P,. To
find out exactly where, we evaluate the curve at the end of the first segment:

Py
P, 1 5 5

=_-P -P,=P —(Py—P
P, 6 1+6 2 1+6( 2 1)
P,

Ql(l):[1111]MsG31:%[0141]

So the join is 5/6 of the way along the line from P; to P,. . [25%)]

(c) When three control points are coincident, the two convex hulls collapse to lines
which meet at one point. The join point is at this point, and the curve, which must
be contained within the two convex hulls, collapses to a polyline with a kink at the
join point.

PPP P,

17273 e

spline collapses
P, to a polyline

We have clearly lost G! continuity. To investigate parametric continuity, we need
expressions for the derivatives of Q(%):
Q'(t) =[3t* 2t 1 0]M,G, and Q"(t) =[6t 200 ]M,G,

Evaluating Q"(t) at the ¢ = 1 end of segment 1 and the ¢ = 0 end of the segment 2
reveals that we still have C? continuity:

Py
1
"1) = [6200]M,Gu=2[06 —126]| 5! | =0
6 P
P,
P,
n _ _1 P; _
2(0) = [0200]M3G3(,-+1)_6[6 -12 6 0] p, | =0
P, [25%)]



(d) C™ continuity does imply G™ continuity, except when Q™ (t) = 0. Under these
circumstances, it is possible to have parametric continuity without geometric conti-

nuity. [10%]
Assessors’ remarks: This question tested the candidates general knowledge of the
properties of spline curves (Hermite, Bezier, B-spline and Catmull-Rom), as well as

the concepts of convex hulls and continuity. This was fairly well answered by those

who attempted it, though there was some confusion regarding what continuity the

curves offered, and the distinction between geometric and parametric continuity. Part

(b) was answered well — many candidates however dropped marks on part (c) by
claiming G? continuity even though they had only proved C? continuity.

. Interpolation and distance transforms

(a) ()

enlarged treatment contour minimum treatment contour

4cm

original contour

4cm [20%]

(ii) The actual treatment area A; can be considered as the initial contour, plus four
rectangles at each side, plus the four corner triangles, thus:

1
A :4*1+2\/§*(1+1+4+4)+4*5*2\/5*2\/5248.284cm2
The minimum treatment area A,, is similarly given by:
1
Am:4*1+2*(1+1+4+4)+4*Z*w*Qz:36.566 cm?®

The percentage increase in area is thus 32%. [20%]



(iii)

enlarged treatment contour minimum treatment contour

4cm

original contour

4cm

This estimate produces a contour which is considerably closer to the required min-

imum treatment contour, and is probably acceptable given the large 2 cm safety
margin. [20%]
(b) (i) In the first procedure, the distance transform was performed for each slice in

2D, which means it calculated the closest planar distance to each contour. This is

not the same as the closest 3D distance to the interpolated surface. For example,
imagine a set of parallel contours through a spherical volume, drawn end on:

minimum treatment volume

So the interpolation in the first procedure underestimates the required volume!. The

!This is not to be confused with the effect of the crude city-block distance estimate, which is to
overestimate the required area in each of the original slices.
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interpolation in the second procedure uses a 3D distance transform which produces
a correct estimate.

(ii) The first step in shape-based interpolation is to calculate a 2D distance transform
of each contour to be interpolated. In the first procedure, the 2D distance transform
is interpolated between the slices and an isosurface extracted from the resulting
volume. In the second procedure, the distance transformation is after interpolation.
In practice, we would have to calculate 2D distance transforms for each contour in
order to do the shape-based interpolation, but then throw these away and calculate
a new 3D distance transform before extracting the isosurface. The second procedure
is therefore much more expensive than the first.

Assessors’ remarks: This question tested the candidates knowledge of distance
transforms and shape-based interpolation. Only one candidate made a serious at-
tempt at the question and did reasonably well, losing marks mainly on (a)(ii) by
forgetting to add the safety margin to the minimum target area.

. Reflection models and shading algorithms

(a) I, is the intensity of the reflected light of colour A, where A € {r, g,b} for red,
green and blue.

I, depends on several terms. First, there is the ambient reflection term, ¢yI,k,, which
models indirect illumination of the surface. ¢y, where 0 < ¢, < 1, specifies the colour
of the surface. I, is the intensity of the general background illumination, and k, is
the surface’s ambient reflection coefficient.

The next two terms in the model are calculated for a point light with intensity I,.
First there is the diffuse reflection term, c)ykqL.N, which models even reflection of
the light source in all directions. Diffuse reflection is greatest when the surface in
pointing directly towards the light source, and tails away to zero when the surface is
side-on to the light source. L is the unit vector from the surface point towards the

light source, N is the unit surface normal and k4 is the surface’s diffuse reflection

coefficient (small for dark surfaces, high for bright surfaces).

Finally, there is the specular reflection term, k, (R.V)", which models directional
reflection of the light source along the unit mirror vector R. V is the unit vector
from the surface point towards the viewer. The viewer only perceives the specular
highlight (or glint) when looking along the mirror direction, or at least close to it. &,
is the surface’s specular reflection coefficient (small for matte surfaces, high for shiny
surfaces), and n is the specular exponent that determines the tightness of the glint.
n is high for a tight highlight (eg. a perfect mirror) and small for a more blurred
highlight (eg. aluminium).

The model can be extended to incorporate multiple light sources 4, depth cueing and
shadows as follows:

I, =c\I,ky + Z SifattIpi(C)\dei.N + ks (R,V)n) .
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The diffuse and specular terms are attenuated by a shadow factor S;, where 0 < §; <
1. S; is the fraction of the pixel shaded from the light source, often calculated using
a shadow Z-buffer algorithm. There is also a depth attenuation factor fu, usually
of the form

1
att = 11 y 1
fast = min (a1 + asd + azd? )

where a;, a; and a3 are constants, and d is the distance from the light source to the
surface point. The depth cueing ensures that surfaces with the same orientation, but
at different distances from the viewer, are not assigned the same intensity.

(b) The circumcentre is equidistant from each vertex, so interpolating the vertex
normals to this point amounts to simple averaging of the three values. The vertex
normals should be normalised before averaging, though in this case it makes little
difference since they are all of similar magnitude. The surface normal N at the
circumcentre is therefore [0 0 1]7. The mirror direction R is coplanar with N and
L, with N bisecting R and L. By inspection, the mirror direction R is therefore
[0 1 1]7. Substituting the values into the basic Phong equations, and remembering
to normalise the vectors before taking the scalar products, we obtain I, = I, =1,
I, = 1.85.

Note how the viewing direction is aligned precisely with the mirror direction, resulting

in a prominent white specular highlight at the circumcentre, superimposed on the blue -

ambient and diffuse components. Given the high specular exponent n, the highlight
will be far less prominent at each of the three vertices, where the mirror and viewing
directions are not aligned. Since Gouraud shading interpolates intensities from the
vertices into the interior, it is likely that the specular highlight at the circumcentre
will be entirely missed, leaving just the blue ambient and diffuse terms.

(c) Gouraud shading proceeds by calculating a colour at each vertex using the vertex
normal and the Phong model. Colours for interior pixels are found by bilinear inter-
polation. For efficiency, the interpolation can be formulated using fast, incremental
calculations, amounting to one addition per rendered pixel.

Phong shading interpolates the normals instead of the intensities, a much more ex-
pensive operation. Even though the normals can be interpolated using incremental
calculations, there are three values to be interpolated (the three components of the
normals), compared to one for Gouraud shading (the intensity value). Also, the

normal vectors have to be normalised, and then a separate intensity for each pixel

calculated using Phong’s model.

So Phong shading is much more expensive than Gouraud shading. Both are more
expensive than flat shading, though the latter is only viable when viewing facetted
surfaces under simple illumination.

Incremental bilinear interpolation, which lies at the heart of both Gouraud and Phong
shading, requires one division per scanline to obtain the increments, then one addition
per rendered pixel to calculate the intensities. For a fixed size triangle, the process
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will be slightly quicker (by virtue of fewer divisions) when the triangle is oriented
with its longest aspect horizontal, so that it spans the smallest number of scanlines.
When the triangle is viewed end-on with respect to the pixel array, it doesn’t need
shading at all!

Assessors’ remarks: This question was about the Phong reflection model and
how it is employed in common shading algorithms. Parts (a) and (c) were largely
book-work and well answered by the vast majority of candidates, who were clearly
well-prepared for the examination. Part (b) was less well answered, largely because

many candidates failed to realise that a triangle’s circumcentre is equidistant from

its three vertices. Despite this, most candidates were able to speculate intelligently
on the likely benefits of Phong shading compared with Gouraud shading.

. Rasterisation and aliasing

(a) Rasterisation refers to the process of displaying graphics primitives (lines, poly-
gons etc.) on discrete, pixelised displays. Rasterisation algorithms generate a list of
pixels which are shaded in order to display the primitive. More advanced rasteri-
sation algorithms incorporate anti-aliasing features. Rasterisation is also sometimes
referred to as scan conversion.

(b)

rasterised edges shaded pixels

(i) The edge rasterisation algorithms outputs the pixels shown above left (the dots
are the rectangle’s vertices).

(ii) To preserve areas as closely as possible, the convention is that the top scanline of
the polygon is discarded, and each span shaded up to but not including the rightmost
pixel. This results in a rendered polygon of area four pixels, as shown above right.

(iii) A simple matrix multiplication reveals the vertex coordinates of the rotated
rectangle:

cos45° sin45° 0011 |0 28 354 071
—sin45° cos45° 0 440| |0 282 212 —-0.71
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Rounding to the nearest pixel, we find the rotated rectangle vertices at

0 3 4 1
0 3 2 -1

rasterised edges shaded pixels

The rectangle would be rasterised as above, giving a rendered area of six pixels.

(c) Aliasing artefacts arise because images are rendered into a discrete sampling
array in space (and, in the case of animations, in time). The most commonplace
aliasing artefact is the ubiquitous jagged edge of a polygon or shadow. “Jaggies”
are particularly noticeable in animated sequences, where edges appear to “crawl”
and small or thin objects may appear and disappear depending on their orientation
(“scintillate”). In (b) we saw a less severe example of scintillation, where the area of
the rectangle changed by up to 50% depending on its orientation.

More advanced rasterisation techniques go some way towards suppressing aliasing
artefacts. (i) “Supersampling”, or “postfiltering”, involves rendering the image into

an intermediate framebuffer at n times the display resolution. The supersampled

image is then low-pass filtered at the Nyquist limit of the final display framebuffer,
which is filled by subsampling the intermediate framebuffer. (ii) “Prefiltering”, or
“area sampling”, involves rasterising each polygon’s edges to sub-pixel accuracy, so
that each pixel can be classified as, for example, 30% polygon A, 20% polygon B and
50% polygon C. Then the intensity of the pixel is set to a weighted average of the
individual polygon’s contributions. Both techniques are computationally expensive,
though hardware postfiltering is now a feature of desktop PC graphics cards.

Assessors’ remarks: This question covered familiar topics in rasterisation, before
asking the candidates to comment on some unfamiliar anti-aliasing schemes. Surpris-
ingly, the candidates fared better with the unfamiliar material, coming up with some
good discussions about how the schemes could work in practice. Less impressive
were the answers to part (b), which asked the candidates to calculate the output of a
rasterisation algorithm. There were many careless slips, perhaps due to lack of time.

Andrew Gee & Graham Treece

April 2004

12

30%)

[30%]



	
	
	
	
	
	
	
	
	
	
	
	

