Solutions to 4F10 Pattern Processing, 2004

1. Bayes decision rule and GMMs

(a) For multi-class problems, we calculate all the C posterior probabilities
P(w|z), P(ws|x), ..., P(wc|x),

find the maximum of these and assign the vector x to the corresponding class.

Applying Bayes’ Rule to this formula we need to find the class w; which gives
max p(@|w;) P(w;)

since the rhs denominator of Bayes’ rule is independent of class and this is a frequent
statement of Bayes’ decision rule for minimum error.

The key issues in approximating this calssifier is how well we can estimate from
training data the form and parameters of both the class-conditional pdfs and the
priors from training data. If there is a very large training set and a relatively few
parameters to estimate and the underlying class conditional distributions are very
close to e.g. Gaussian then we may be able to approximate the Bayes’ classifier
and the minimum error rate well. However, the usual case is that there is insufficient
training data to estimate a large number of parameters and the form of the underlying
pdfs may be complex, and hence the approximation may be poor.

(b) Gaussian mixture distributions can model arbitrary data distributions given
enough mixture components. This includes (with diagonal covariance mixture com-
ponents) muti-modal distributions; correlated distributions and non-symmetric dis-
tributions (a diagram can be used to illustrate this to advantage). Here we are told
that the data is close to Gaussian so it is probably not multi-modal and is roughly
symmetric.

For a GMM, the number of parameters needed will be 2DM + M — 1 where D is the
dimensionality of the data and M is the number of mixture components.

A full covariance model can model correlations directly (still assumes basic Gaussian
structure and symmetric, unimodal). It has a symmetric covariance matrix with
D.(D + 1)/2 so the overall number including the mean is D.(D + 3)/2 . So this is
not so powerful and for large D (certainly for D = 20 or greater) then number of
parameters involved can be very high and a Gaussian mixture approach (or feature
reduction) is preferred, since the number of components to model the correlation
structure may be rather smaller than to make up for the extra parameters a full
covariance matrix.

Computation is roughly in line with the number of parameters, although a GMM of
diagonal Gaussians are slightly higher computationally per parameter, but can more

[15%]

easily be approximated by not computing all the Gaussian components [latter poiunt
not discussed in the course]. [20%)]

(c) When E-M is used on each iteration the maximisation will guarantee an increase
in the log likelihood of the data unless it is at a local maximum. Hence a graph of the
log likelihood against iteration will monotonicly increase and converge. Furthermore
no information about previous iterations updates is necessary (unlike the use of a
momentum term).

For gradient-descent (this would be on the negative of the log likelihood function), the
the step size for all parameters has to be explicitly set and there is no guarantee that
the likelihood will increase. For stability need to use a small step size. The training
procedure can be improved by the use of information from previous iterations or
second order methods but these require more statistics to be computed than for
E-M. Hence E-M is preferred for problems to which it can be applied.

Note that both are susceptible to local maxima in the log likelihood function. [10%)
(d)(i) The log likelihood function for the data

1(0) = Zlnp T)) = Zln [Z p wklm)cm]

m=1

where the dependence on the pdf for mixture component m is explicit.

This is for any mixture model. For Gaussians, simply substitute in a Gaussian
pdf expression for p(xx|m). For instance, if the Gaussian distribution has the form
3,, = 021 (as in lectures), then

0)—Zln Z Cm? 1)d/2“p{ﬂli?;?:@ﬁ}]

m

Now, it is necessary to find the partlal derivative of (@) with respect to the param-
eters of the mixture distribution. [10%]

(d)(ii) First, we note that from Bayes’ since the ¢, is a prior probability:

p(@e|m)em

P(m|xzy) = (@)

For a particular mixture component weight c,,

oe) & 1 0lp(er|m)cn]
Fem

— p(xk) I

or
0l(0) _ < plxklm

>

acm _k=1 p(wk)

or
ol0) I P(m|xy)
Ocm “kz;; Cm
[15%)]

(d)(iii) The log likelihood derivative is given above. However here we need to go back
to use Lagrange multipliers to enforce the constraint.

In this case add A(ZM_, ¢, — 1) to the log likelihood function and repeat as above
and equate to zero for a maximum.

O(HO)+ Nt on = 1)) _ g Plmlz)

oc, =1 Cm

- A

This implies that at the required maximum (equating to zero)
1 n
m =< > P(mlzy)
A k=1

The constraint that 7, ¢,, = 1 gives

Mln

Z ZP mlxg) = 1
A= >) P(mlxy)

S0
1

n
Z mlwk

(d)(iv) The problem with direct application of this formula is that the values of
the posterior P(m|xy) depend on the component priors. However it can be used
iteratively. On each iteration use the old values of the component priors to compute
the posteriors and then given those values update the component priors and any
other parameters of interest (not here since the means and covariances are known).

3

[15%]

This is application of the E-M algorithm which has two stages, the first is to find
the expected value of the “missing” variable. In the case of the Gaussian mixture
parameters this is the mixture component that is occupied for data sample x i.e.
the value of mixture component occupation or P(m|x). Given the complete data
set the maximisation of the auxiliary function gives the update above. [15%)]

2. Multi-layer perceptrons

(a) (i) The number of hidden layers determines the decision boundaries that can be
generated. In choosing the number of hidden layers it should be noted that multi-
layer networks are harder to train than single layer networks and that a two layer
network (one hidden) with sigmoidal activation functions can model any decision
boundary.

Therefore if a problem is linearly separable (rare for real problems), choose a single
layer L = 0 network. Two layer networks L = 1 are most commonly used in pattern
recognition (the hidden layer having sigmoidal activation functions). The number
of nodes in the hidden layer needs to be great enough to be able to construct the
decision boundaries for the problem but limited otherwise the number of weights will
be too large to estimate reliably and performance on test-data (i.e. generalaisation)
will suffer.

For classification tasks the input has the number of inputs equal to the dimensionality
of the data, and the output layer normally has as many nodes as classes (1-in-C
coding). [15%]

a)(ii) The weight matrices including the biases are simply N®) x (N*-1 4 1) ma-
g g
trices. So we have in total
k=L+1
}j N® x (N®=D 4 1)

[10%]

1 06(z) _ exp(—2)
1+exp(—2) 0z (14 exp(—2))?
= ¢(2)(1 - ¢(2))

y=¢(z) =

We would like to minimise the square error between the target of the output, ¢(x,),
and the current output value y(x,).

B = 3 005) ~t05) (u0s) ~) = 3 B

p=1

In general we can write using the chain rule (for a single input/ouput pattern):

OE OE 02"
ouy) 02 owly

Now, for the output layer, let y; be the output of node ¢ and z; the input to the
activation function

825,' B 8yz azi
and since
OF

and the activation function is a sigmoid we have

oF
o'k = (yi — ti(xp))-wi(1 — yi)xzj
where x;}j is the j** element of the output from the final hidden layer. [25%]

(b)(ii) The above was for one pattern. Normal batch style training first sums the
contributions to the partial derivatives of E wrt the weights over all patterns to get
VE.

OF|7]
aw(k)

i

k
wPlr +1] = wP[r] =

Here we get the usual problems with gradient descent in that we get overshoot if the
learning rate is too large and very slow learning if it is too small.

A simple approach to setting 7 is to make it adaptive. One of the simplest rules is
to use

[1aqlr); if E(6[7]) < EO[r - 1))
n[r+1] = { 0.52{7{; if EEB[T]) ; E(0[T —1])

In words: if the previous value of 7[7] decreased the value of the cost function, then
increase n[T]. [15%)]

(b)(iii) The addition of a momentum term to the optimisation is common in MLP
training. The update formula is

Wl +1] = %P + AwPr]
where

AwWP[r] = —g[r +1] —affk) +alr]Aw®[r - 1]

The use of the momentum term, a[7]:

e smooths successive updates;
e helps avoid small local minima.
Unfortunately it introduces an additional tunable parameter to set. Also if we are
lucky and hit the minimum solution we will overshoot. [15%]

(c) For the softmax

exp(z;)

7 =1 exp(2;)

The output is positive and the sum of all the outputs at the current level is 1,
0<y; <1

Now the key issue here is that in calculating the derivatives for the softmax function
it is necessary to conider all of the inputs to the the final layer activation and not
just the input to a particular node.

Hence

Oz 7 Oy, 0z

The substitutions from above carry on as before with this modification. This increases
the complexity of computing the derivatives for the final layer weights. [20%)]

. Support Vector Machines and Kernels

(a) The training criterion for the perceptron algorithm is the sum of the perpendicular
distance from the decision boundary of all miclassified points. There is no unique
solution to this cost function. For the SVM classifier the cost function is to maximum
the margin, i.e.

mabxmin{Hx - x|[; (W, x) +b=0,i=1,...,m}

’

This has the dual form which required minimising

min7(w) = 2wl
subject to

yi ((w,x;) +b0) > 1
foralle=1,...,m.

When the data is not linearly separable slack variables must be introduced. The
soft-margin classifier is obtained by minimising

r(w,€) = SlIwlf + O
=1

subject to

yi ((w,x3) +0) > 1-¢
& > 0
[25%]

(b) Kernels map from the input-space to a higher dimensional feature-space. A linear
classifier is then built in this feature space. This results in a non-linear decision
boundary in the original feature space. The general form for the polynomial kernel
is

k(Xi, X]') = (Xi.Xj + 1)d
[15%]
(c)(i) The kernel function is

N

+ Z cos(rz;) cos(rz;) + sin(rz;) sin(rz;)
r=1

k(zi,z;) =

[N

_+.
0=
(@]
2

- z;))
()

1— l(N-I—l)(:L‘i—zj)
+ Re (.

1 _ ez(mi —.CL‘J')

l

N = Mlb——l wl»—-

Examining the denominator
1 — %) = 9@ =22 5in((z; — ;) /2)

and noting that

Re (; (1- @)} = —sin((z; - 2,)/2) = sin((N +1/2) (@ ~ 7))

zel(-’tt_w])/2
It is then straight forward to show that

sin((N + 1/2)(z; — z;))
2sin((z; — x;)/2)

k(xb 117]-) =
[25%]

(c)(ii) The kernelised version of the rule is
gi(z) = Zyiaik(:v, z;)+b
=1

Once the number of support vectors are known then the computational cost is inde-
pendent of the number of training samples and N. The cost scales linearly with the
number of support vectors.

(d) From the lecture notes Kesler’s construct was mentioned. The multi-class problem
can be converted to a 2-class problem. Consider an extended observation X which
belongs to class w;. Then to be correctly classified

WX - Wix>0, j=2,...,K

There are therefore K —1 inequalities requiring that the K (d+ 1)-dimensional vector

X X X

-X 0 0

Y12 = 0 sy Yis=| X |, -y Mk = 0
| 0 | | 0 | | —X |

. Non-Parametric Classification - Parzen Window

(a) Parzen window density estimates make no assumptions about the form of the
desnity. In contrast a Gaussian distribution assumes that the form of the density is
known, so only the mean and variance are required. The Parzen window requires the
storage of all points and a window function computed for each of those points. In
contrast the Gaussian needs only the mean and covariance matrix to be computed.
The evaluation of the PDF is then very quick, depending on the dimensionality of
the training data, not the number of training samples.

(b)(i) The value of h detrmines the smoothness of the probability density estimate.
The value of h should vary inversly to the number of points a typical form is

[15%]

[20%)]

20%)]

[15%)

(b)(ii) The window function is valid PDF so

[, 66dx; () > 0

By simple analogy with the hypercube (or consider scaling each dimension)

X
/Rd (5)dx = h

Hence

n

fur0adx = [=3 (25) ax

1=

[

1&1 X —X;
= -y = AW
n ; hd /Rd ¢ (h) *
=1
[15%)]
(c)(i) The form of Gaussian window function and the first order Taylor series expan-
sion is
r—z;\ 1 (z — z;)?
¢(h) B \/27rexp(2h?)
1 - (z — z;)?
T Ver 2h?
The approximate Parzen window is then
~ 1 & 1 (iL’ - .’Ei)2
~ S [— (1=
B Z L% z?
a hm/—27r 2h2 h2 2k
[25%)]

(c)(ii) It is only necessary to store the values of by, b; and by. The Parzen window
approximation is then simply computed as calculating the weighted sum for the
Taylor series. [10%)]

(c)(iii) The approximation requires that

r —X;

<<1
h

This requires that value of h should be large. However this results in a poor ap-
proximation for the true distribution p(x). To overcome this problem the number of
elements of the Taylor series expansion can be increased. [15%]

	
	
	
	
	
	
	
	
	

