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(Q) (L\ s'erem‘\'it)\ (1’ Sr(ﬂ;‘j) = 9’[1) gr(j)

Lir:lz ( 2004) CobuTions ( aLro»H>

(ii) The intensity of a smoothed pixel is computed by discrete convolution:

S@y) =3 S Goliri)I(@—iy— )

i=-nj=-n

The 2D convolution can be decomposed into two 1D convolutions as follows:

o)+ IEn) = 3 S 90 9.0) Iz =iy = ) = 96(2) * [0 (¥) * I (@, V)]

i=-nj=-n

where g,(z) is a 1D discrete approximation to the Gaussian kernel:

(z) = —l——ex _z
R) 1 e - ~l N s

(b) By examining first order Taylor expansions, we find that .

d*I
E&E ~ I(a:-—l,y) - 2I(z,y) + I(z+1,y)
(z9)
and 21
d—E ~ I(a:,y—l) - 2I($,y) + I(‘”'y"'l)
Yz

It follows that the Laplacian can bg estimated as follows:

&1 &

. ~ o1
Vi (zy)  dz? dy?

R Iz-1y) t @419 T Igy-1) + L(zy+1) — 4l(zy)

(z,9) (z,y)

This estimate can be computed by convolving with the kernel

0{1]0
1141
0110

(c) [Book work] The principle advantage of the Marr-Hildreth f)perator is compu'ta-
tional efficiency: edge detection requires only a single convolution and. t.he detection
of zero-crossings. Conversely, the Canny operator requires an additional, costly
search for a local maximum normal to the gradient direction. '.I‘he advantage of .the
Canny operator is enhanced robustness to noise. Any differential operator amplifies
noise. The Canny operator computes only first derivatives and then searc:hes.for
a local maximum (which is equivalent to a zero-crossing of the second der¥vatfve)
normal to the gradient. The Marr-Hildreth operator computes se.conc.l derivatives
both along and normal to the edge. Computation of the second de.nvat.we along 'the
edge emphasizes noise in that direction while serving no purpose 11 edge detection.

L1o]

g
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2. Perspective and weak perspective projection

(a) [Book work] The mapping from camera-centered coordinates (X, Y, Z.) to pixel
coordinates (u,v) involves a perspective projection onto the image plane (z,y) fol-
lowed by an anisotropic scaling and translation in the image plane to account for
the dimensions and positioning of the CCD array.

The perspective projection is a non-linear operation in Cartesian coordinates:

X 1%
Z.’ Z.

where f is the focal length of the camera. This can be rewritten as a linear operation
in homogeneous coordinates:

ST f 000 };‘
sy|=10 f 00 Z“
s 0 01O lc

The mapping from image plane coordinates (z,y) to pixel coordinates (u, v) is given
by:
u=1uy+kyx, v=1y+kyy

where the optical axis intersects the CCD array at the pixel with coordinates (uo.vo)
and there are k, pixels per unit length in the u direction and k, in the v direction.
In homogeneous coordinates, this becomes

su k., 0 wug ST
sv|l=1|0 k, v sy
s 0 0 1 s

Concatenating the two transformations, we obtain

su k.f 0 wup O );c
sv|l=| 0 Kk, v O Zc
s 0 0 1 0 1”

(b) (i) Under weak perspective projection, we assume that all points lie at approx-
imately the same depth Z4 from the camera. This allows the projection to be
re-written as follows:

EO k.f 0 0 ugZy );c
Sy | = 0 kuf 0 vZ4 Zc
S 0 0 0 ZA ¢

1



(ii) Under full perspective we have
kufXc + uoZe
u = ——m—m
Z.
Under weak perspective we have

kufXe+uoZa _ [ kufXc+ %Za (_Zi)
ZA - Zc ZA

_ (kquc+u0Zc+uo(ZA—Zc) (_Z_) _ (u+ quZ) (i)
Zc ZA - Zc ZA

Ugp =

where AZ = Z4 - Z,. So

v—ua = u— (ch+quZ) (_Z_c_) _ (uZA B ch+quZ) (_Zi)
4 = Z. Zy)  \ Z, Zc Za
_ w(Zs — Z;) —ugAZ (_Z_c_) —(u—u )é_Z_
Z, I \Z,4 0" Z4
Similarly for (v — v4), we find that
v—vAz(v—vo)é—Z

Za

So the weak perspective approximation is perfect at the centre of the image, but
gets progressively worse away from the centre.

(iii) [Book work] Weak perspective is a good approximation when the depth range
of objects in the scene is small compared with the viewing distance. A good rule of
thumb is that the viewing distance should be at least ten times the depth range.

The main advantage of the weak perspective model is that it is easier to calibrate
than the full perspective model. The calibration requires fewer points with known
world position, and, since the model is linear, the calibration process is also better
conditioned (less sensitive to noise) than the nonlinear full perspective calibration.



3. Planar projective transformations

(a) (i) When the camera is viewing a plane, the relationship between pixels and
world positions is given by

su P P2 D3 X
SV | = | pa P22 P23 Y
s P31 D32 D33 1

or w = PXP? for short. For a second image of the same point, we have W = P'X?.
It follows that W = P'P~'w = Tw, where T = P'P~! is a 3 x 3 matrix. Hence the
relationship between points in the original image and corresponding points in the
second image is a 2D projective transformation.

(ii) Assume, without loss of generality, that before the camera is rotated, the camera
is aligned with the world coordinate system and hence

X X

Y
Z

w=K[I|O] =K =KX

Y
Z
1

where K is the 3 x 3 matrix of intrinsic camera parameters:

K= 0 f k,, Vo
0 0 1
It follows that
X =K 'w

After rotating by R about the optical centre, the same world point X projects to a
different image point W' as follows:

X
X
#=K[R|O]| Y | =KR| Y | =KRX = KRK™'¥% = Tw
z
1

where T = KRK™!. Hence the relationship between points in the original image
and corresponding points in the second image is a 2D projective transformation.

(b) Since the transformation operates on homogeneous coordinates, the overall scale
of the transformation matrix does not matter and we could, for instance, set ¢33 to 1.
The transformation therefore has 8 degrees of freedom.

The image of a sqﬁare could take any of the forms shown on the next page.

[20%]
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Translation (2 DOF) Rotation (1 DOF) Scaling (1 DOF)
e
Shear - axis and ‘Fanning - equation of [20%]
magnitude give 2 DOF horizon line gives 2 DOF

(c) The equation of the line in the first image is 17W = 0, where 1 = [{; I, I3 ]T.
Since w = T~ ! W/, it follows that the equation of the line in the second image is
ITT'w =0, or simply I' = T-T1 [20%]

(d) The equation of the conic in the first image is W CW = 0, where
a b/2 d/2
C=|b/2 c ¢/2
d/2 e/2 f

Using again the relationship = T~ W', we find the equation of the corresponding
conic in the second image as follows:

(T'#)CT'W=0 & W TTCT'W=0

Alternatively, the conic in the second image can be expressed simply as C' =
TTCcT™. [20%)]

|




4. Stereo vision

(a) The stereo camera geometry constrains each point feature identified in one image
to lie on a corresponding epipolar line in the other image. If the cameras are
calibrated, then the equation of the epipolar line can be derived from the essential
matrix. For uncalibrated cameras, it is possible to estimate the fundamental matrix
from point correspondences and derive epipolar lines from the fundamental matrix.
Epipolar lines meet at the epipole: this is the image of one camera’s optical centre
in the other camera’s image plane. There are two epipoles, one for each image.

(b) The essential matrix E describes the epipolar geometry of a stereo rig in terms
ofraysp= [z y f]¥, where (z,y) are the metric image plane coordinates of an
observed point and f is the camera’s focal length.

To derive the essential matrix in terms of R and T, we start with the equation
relating the two coordinate systems:

X, = RXc+T=TxX,=TxRXc

0o -T, T,

= Xe(TxRXe) = 0 Xe.(TxRXe) =0, where Ty =| T, 0 -T;
-, T, O

& p’T[TxR]p = 0, since rays and camera-centered positions are parallel.

The essential matrix is therefore given by E = T«R.

Epipolar geometry can be expressed in pixel coordinates and the epipolar constraint
leads to the fundamental matrix. The essential and fundamental matrices are related
by the internal calibration matrices K and of the left and right cameras, where

fke 0 up
= 0 fkv (4] )
0 0 1

f is the focal length, k, and k, the pixel scale factors and (uo,vo) the point where
the optical axis intersects the image plane. F='"-"TT,R™!

(c) F can be estimated from point correspondences Each point correspondence w « W'
generates one constraint on F:

fu fa fis u
[U' v’ 1] fa fa fa v|=0
far fa2 fas 1

This is a linear equation in the unknown elements of F. Given eight or more perfect cor-
respondences (image points in general position, no noise), F can be determined uniquely
up to scale by solving the simultaneous linear equations. In practice, there may be more
than eight correspondences and the image measurements will be noisy. The system of

equations can then be solved by least squares, or using a robust regression scheme to
reject outliers.

The linear technique does not enforce the constraint that det F = 0. If the eight image
points are noisy, then the linear estimate of F will not necessarily have zero determinant
and the epipolar lines will not meet at a point. Nonlinear techniques exist to estimate F
from 7 point correspondences, enforcing the rank 2 constraint.

(d) The epipoles lie in the null spaces of F and FT. So, for the left epipole we have:
Fwe=0

If F were invertible, we would be able to write

- -t n
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