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1 (8 Noting the advantages and disadvantages of each approach, explain the
differences between computing turbulent flows by

(i) Direct Numerical Simulation;

(i1)) Large Eddy Simulation;

(iii)) Reynolds Averaged Navier Stokes turbulence modelling. [25%]

(b) Explain the derivation and meaning of the Richardson number. What is its
significance in a turbulent flow? [25%]

(c) What is the Dry Adiabatic Lapse Rate? [25%]

(d) Katabatic flows run downhill, while arabatic flows run uphill. What drives
these flows? By consideration of the Richardson number, decide which of these flows is
likely to be faster. [25%]

2 A parcel of fluid of mass m is displaced vertically by a distance Az in a still
region where the local density gradient is dp/dz . Assume that the density of the parcel

remains unchanged by the move.

(a) Assuming that dp/dz is negative and the displacement is vertically

upwards, derive an expression for the restoring force acting on the fluid parcel. [30%)]

(b) Assuming that the parcel executes simple harmonic motion, derive an
expression for the natural frequency of oscillation. (Hint: Compare with a spring-mass
system.) [30%]

(c) Explain the phenomenon of internal waves in the atmosphere. What drives
these waves? Explain under what conditions you would expect large internal waves.  [40%]
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3 (@) The concentration (in kg m™) ¢ of an inert pollutant in the air above a city
is to be calculated with a Box Model. The mixing height is H, the city has dimensions L
and W in the directions parallel and normal to the wind respectively, and the wind has
velocity U. The pollutant is emitted uniformly across the city at arate ¢ kgs™ m™ and
the incoming air is uncontaminated from the pollutant. Derive an equation for the rate of
change of ¢ and find the steady-state value of ¢ as a function of the given parameters. [30%)]

(b) Discuss how ¢ may change during the day, given that the wind direction
and speed and the emission rate are constant. [20%]

(c) We may assume that aviation traffic throughout the year releases another

S kg s m™ of pollutant in the Box Model of part (a), where S 1is distributed
|y

according to a normal distribution with mean S and variance o2,

(1) Find the yearly average ¢ and the variance O'C2 of the concentration
for this case. [40%)]

(1)) What is the probability density function of ¢? A qualitative answer or
a mathematical expression are equally sufficient. [10%]
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4 (a) A line source of length L emitting O kgs™ m™ of inert pollutant per unit
length is placed parallel to the wind of speed U (Fig. 1). Find an expression for the
pollutant concentration as a function of x along the direction of the line source (i.e. at
y=z=0), where x 1s measured from the downwind edge of the source. You may
assume that the dispersion coefficients in the two cross-wind directions (i.e. y and z)
are equal and proportional to downwind distance. [70%]

(b) How would you modify your answer to part (a) above, if the line source
was located at a height H above a fully-reflecting solid surface? [30%)]

Fig. 1

END OF PAPER
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4A8: Environmental Fluid Mechanics

Part I: Turbulence and Fluid Mechanics

DATA CARD

Rotating Flows

Geostrophic Flow - —LVp =2Qxu
P

2
Ekman Layer Flow -2Q.v= _1or + véﬁ
pox 572

OR -2Q v=y——

2
- Zsz(uO —-u)= vg-—;
0z

GEOSTROPHIC VELOCITY

u= uo[l—e_”A cos—Z—]

z/A

Solution is

— . Z
V=1Uuge Sll’lZ
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Turbulent Flows — Incompressible

U,

Continuity Equation VeU=—"L=0
Ox;
Momentum Equation p% =-VP+ /Nz U+F
D 2
U, __oP . o0°U; +F,
Dt o ; asz
. DT 8T
Enthalpy Equation pe,——=-k—s
Dr ox?
Reynolds Transformation U, = U_, +u; etc
Reynolds Stress =—puu;
Reynolds Heat Flux =—pc,u;0

Turbulent Kinetic Energy Equation

) — -
oU; ou; & Ou; U; o
Dg _ —uuy —— v( Ly ik ][ : ]+ Jits + transport of kinetic energy forms

Dt 2 Oxy, Ox,  Ox; \ Oxg P

In flows with thermally driven motion

Dissipation of turbulent Kinetic energy &~ 7
3 \V4
. v
Kolmogorov microscale n=|—
£
urZ
Taylor microscale (A) &= 15v—-2—
A

(vis the kinematic viscocity)



UNIVERSITY OF
CAMBRIDGE

Density Influenced Flows

Atmospheric Boundary Laver

ar __ & _4d1r
dz |NEUTRAL STABILITY Cp dz |pALr
dr_dr
g dz dz

DALR _ RICHARDSON NUMBER

el
dz

U=2%mZ. auv _ux
Kz dz &z

R;

Neutral Stability

Us = Tw ; k= von Karman Constant = 0.40
\/ Yol

Non-Neutral Stability

3
L = Monin-Obukhov length = - _n
g 0O

K‘_
T pc,

Q = surface heat flux

-1/4
d_U = -Lﬁ-(l -15 ij Unstable
dz x L

= ﬁ*—(l +4.7 3) Stable
K L

Buovant plume for a point source

d

— 7R*w =27Ru, (i)
dz
d )
— prR*“w=p,27Ru, (1)
dz
d 2 2
— prR*w = g(p, - p)rR (ii)

dz
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(1) and (ii) give

nR? w(&—i)g = constant = F, (buoyancy flux)
Pa

u, =aw

e

(o = Entrainment coefficient)

N2_._89p _gdl
pdz T dz

DALR j

N = Brunt — Vaisala Frequency or Buoyancy Frequency

Actually T\ &7
z z

gldr dr
T
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4A8: Environmental Fluid Mechanics

Part II: Dispersion of Pollution in the Atmospheric Environment
DATA CARD

Transport equation for the mean of the reactive scalar ¢:

B g, 80 B3
o Jox; o\ oxg

Transport equation for the variance of the reactive scalar ¢:

—\2
_a_g_+ﬁjag=a k2 |k 2|
ot 8xj 6xj axj axj

g+2W

turb

Mean concentration of pollutant after instantaneous release of Q kg at /=0:

RO e x-x)® =20’ , (z=2)
(m)” *(K,K,K,) 4| K K K

x y z

$(x,y,2,0) =
8
Gaussian plume spreading in two dimensions from a source at (0,0,zp) emitting O kg/s:

_ 2 _ 2
¢(-x>yaz)=g 1 exp - y +(Z ZO)
27 Uo 0, 202 207

One-dimensional spreading from line source emitting /L kg/s/m :

o0 1 v

Relationship between eddy diffusivity and dispersion coefficient:

ocl=2=K

X
U



	
	
	
	
	
	
	
	
	

